Conceptual Metaphor Theory as a Prompting Paradigm for Large Language Models
- URL: http://arxiv.org/abs/2502.01901v1
- Date: Tue, 04 Feb 2025 00:26:39 GMT
- Title: Conceptual Metaphor Theory as a Prompting Paradigm for Large Language Models
- Authors: Oliver Kramer,
- Abstract summary: We introduce Metaphor Conceptual Theory (CMT) as a framework for enhancing large language models (LLMs)
CMT leverages metaphorical mappings to structure abstract reasoning, improving models' ability to process and explain intricate concepts.
We compare four native models (Llama3.2, Phi3, Gemma2, and Mistral) against their CMT-augmented counterparts on benchmark tasks spanning domain-specific reasoning, creative insight, and metaphor interpretation.
- Score: 0.0
- License:
- Abstract: We introduce Conceptual Metaphor Theory (CMT) as a framework for enhancing large language models (LLMs) through cognitive prompting in complex reasoning tasks. CMT leverages metaphorical mappings to structure abstract reasoning, improving models' ability to process and explain intricate concepts. By incorporating CMT-based prompts, we guide LLMs toward more structured and human-like reasoning patterns. To evaluate this approach, we compare four native models (Llama3.2, Phi3, Gemma2, and Mistral) against their CMT-augmented counterparts on benchmark tasks spanning domain-specific reasoning, creative insight, and metaphor interpretation. Responses were automatically evaluated using the Llama3.3 70B model. Experimental results indicate that CMT prompting significantly enhances reasoning accuracy, clarity, and metaphorical coherence, outperforming baseline models across all evaluated tasks.
Related papers
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Cognitive Paradigms for Evaluating VLMs on Visual Reasoning Task [3.2228025627337864]
Advancing machine visual reasoning requires a deeper understanding of how Vision-Language Models (VLMs) process and interpret complex visual patterns.
This work introduces a novel, cognitively-inspired evaluation framework to systematically analyze VLM reasoning on natural image-based Bongard Problems.
arXiv Detail & Related papers (2025-01-23T12:42:42Z) - A Dual-Perspective Metaphor Detection Framework Using Large Language Models [29.18537460293431]
We propose DMD, a novel dual-perspective framework for metaphor detection.
It harnesses both implicit and explicit applications of metaphor theories to guide LLMs in metaphor detection.
In comparison to previous methods, our framework offers more transparent reasoning processes and delivers more reliable predictions.
arXiv Detail & Related papers (2024-12-23T06:50:04Z) - A NotSo Simple Way to Beat Simple Bench [0.0]
This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs)
We propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness.
Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts.
arXiv Detail & Related papers (2024-12-12T16:04:31Z) - Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales [102.54274021830207]
We introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs.
We filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability.
Our approach also reduces hallucinations owing to its high correlation between images and text.
arXiv Detail & Related papers (2024-04-17T07:20:56Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
We propose Counterfactual Inception, a novel method that implants counterfactual thinking into Large Multi-modal Models.
We aim for the models to engage with and generate responses that span a wider contextual scene understanding.
Comprehensive analyses across various LMMs, including both open-source and proprietary models, corroborate that counterfactual thinking significantly reduces hallucination.
arXiv Detail & Related papers (2024-03-20T11:27:20Z) - Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Metaphor Generation with Conceptual Mappings [58.61307123799594]
We aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs.
We propose to control the generation process by encoding conceptual mappings between cognitive domains.
We show that the unsupervised CM-Lex model is competitive with recent deep learning metaphor generation systems.
arXiv Detail & Related papers (2021-06-02T15:27:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.