論文の概要: LAYOUTDREAMER: Physics-guided Layout for Text-to-3D Compositional Scene Generation
- arxiv url: http://arxiv.org/abs/2502.01949v1
- Date: Tue, 04 Feb 2025 02:51:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:39.641341
- Title: LAYOUTDREAMER: Physics-guided Layout for Text-to-3D Compositional Scene Generation
- Title(参考訳): LAYOUTDREAMER:テキストから3D合成シーン生成のための物理誘導レイアウト
- Authors: Yang Zhou, Zongjin He, Qixuan Li, Chao Wang,
- Abstract要約: テキストによる高品質で物理的に一貫した構成シーン生成を容易にするために,3Dガウススプラッティング(3DGS)を利用するフレームワークを提案する。
具体的には、テキストプロンプトが与えられた場合、シーングラフに変換し、初期構成型3Dガウスの密度とレイアウトを適応的に調整する。
シーングラフから指示された依存関係を抽出することにより、現実性と柔軟性の両方を確保するために、物理的およびレイアウトエネルギーを調整します。
- 参考スコア(独自算出の注目度): 5.424048651554831
- License:
- Abstract: Recently, the field of text-guided 3D scene generation has garnered significant attention. High-quality generation that aligns with physical realism and high controllability is crucial for practical 3D scene applications. However, existing methods face fundamental limitations: (i) difficulty capturing complex relationships between multiple objects described in the text, (ii) inability to generate physically plausible scene layouts, and (iii) lack of controllability and extensibility in compositional scenes. In this paper, we introduce LayoutDreamer, a framework that leverages 3D Gaussian Splatting (3DGS) to facilitate high-quality, physically consistent compositional scene generation guided by text. Specifically, given a text prompt, we convert it into a directed scene graph and adaptively adjust the density and layout of the initial compositional 3D Gaussians. Subsequently, dynamic camera adjustments are made based on the training focal point to ensure entity-level generation quality. Finally, by extracting directed dependencies from the scene graph, we tailor physical and layout energy to ensure both realism and flexibility. Comprehensive experiments demonstrate that LayoutDreamer outperforms other compositional scene generation quality and semantic alignment methods. Specifically, it achieves state-of-the-art (SOTA) performance in the multiple objects generation metric of T3Bench.
- Abstract(参考訳): 近年,テキスト誘導型3Dシーン生成の分野が注目されている。
物理リアリズムと高可制御性に整合した高品質な生成は、実用的な3Dシーンアプリケーションには不可欠である。
しかし、既存の手法は基本的な制限に直面している。
(i)テキストで記述された複数のオブジェクト間の複雑な関係を捉えるのが困難である。
二 物理的に可算なシーンレイアウトを生成できないこと、及び
三 構成シーンにおける制御性及び拡張性の欠如
本稿では,3Dガウススティング(3DGS)を利用したテキストによる高品質で物理的に一貫した合成シーン生成を支援するフレームワークであるLayoutDreamerを紹介する。
具体的には、テキストプロンプトが与えられた場合、シーングラフに変換し、初期構成型3Dガウスの密度とレイアウトを適応的に調整する。
その後、トレーニング焦点に基づいてダイナミックカメラ調整を行い、エンティティレベルの生成品質を確保する。
最後に、シーングラフから指示された依存関係を抽出することで、現実性と柔軟性の両方を確保するために、物理的およびレイアウトエネルギーを調整します。
総合的な実験により、LayoutDreamerは、他の構成シーン生成の品質やセマンティックアライメントメソッドよりも優れています。
具体的には、T3Benchの多重オブジェクト生成メトリックにおいて、最先端(SOTA)性能を達成する。
関連論文リスト
- Layout2Scene: 3D Semantic Layout Guided Scene Generation via Geometry and Appearance Diffusion Priors [52.63385546943866]
本稿では,3次元オブジェクト位置の正確な制御をインジェクションするプロンプトとして,追加のセマンティックレイアウトを用いたテキスト・ツー・シーン生成手法(Layout2Scene)を提案する。
幾何学および外見生成における2次元拡散先行をフル活用するために,意味誘導幾何拡散モデルと意味誘導幾何誘導拡散モデルを導入する。
我々の手法は、最先端のアプローチに比べて、より可塑性でリアルなシーンを生成することができる。
論文 参考訳(メタデータ) (2025-01-05T12:20:13Z) - DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling [23.06464506261766]
テキスト記述のみで高度に一貫した3Dシーンを作成する方法であるDreamScapeを提案する。
本手法では,シーン表現のための3次元ガウスガイドを,意味的プリミティブ(オブジェクト)とその空間変換によって構成する。
プログレッシブスケール制御は、局所オブジェクト生成中に調整され、異なるサイズと密度のオブジェクトがシーンに適応することを保証する。
論文 参考訳(メタデータ) (2024-04-14T12:13:07Z) - Urban Architect: Steerable 3D Urban Scene Generation with Layout Prior [43.14168074750301]
合成3Dレイアウト表現をテキストから3Dのパラダイムに導入し、さらに先行として機能する。
単純な幾何学的構造と明示的な配置関係を持つ意味的プリミティブの集合から構成される。
また,様々なシーン編集デモを行い,ステアブルな都市景観生成の力を示す。
論文 参考訳(メタデータ) (2024-04-10T06:41:30Z) - GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting [52.150502668874495]
GALA3D, GALA3D, 生成3D GAussian, LAyout-guided control, for effective compositional text-to-3D generation。
GALA3Dは、最先端のシーンレベルの3Dコンテンツ生成と制御可能な編集のための、ユーザフレンドリーでエンドツーエンドのフレームワークである。
論文 参考訳(メタデータ) (2024-02-11T13:40:08Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
既存のアプローチでは、大規模なテキスト・ツー・イメージモデルを使用して3D表現を最適化するか、オブジェクト中心のデータセット上で3Dジェネレータをトレーニングする。
テキストから高忠実度3Dシーンを合成する新しい手法であるSceneWiz3Dを紹介する。
論文 参考訳(メタデータ) (2023-12-13T18:59:30Z) - TeMO: Towards Text-Driven 3D Stylization for Multi-Object Meshes [67.5351491691866]
我々は,多目的3Dシーンを解析し,そのスタイルを編集する,TeMOと呼ばれる新しいフレームワークを提案する。
提案手法は,高品質なスタイリングコンテンツを合成し,多目的3Dメッシュで既存手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-12-07T12:10:05Z) - CG3D: Compositional Generation for Text-to-3D via Gaussian Splatting [57.14748263512924]
CG3Dは、スケーラブルな3Dアセットを合成的に生成する手法である。
ガンマ放射場は、オブジェクトの合成を可能にするためにパラメータ化され、意味的および物理的に一貫したシーンを可能にする能力を持っている。
論文 参考訳(メタデータ) (2023-11-29T18:55:38Z) - Compositional 3D Scene Generation using Locally Conditioned Diffusion [49.5784841881488]
合成シーン拡散へのアプローチとして,テクスブフォローカライズ条件付き拡散を導入する。
本研究では, スコア蒸留によるテキスト・ツー・3D合成パイプラインを試作し, 関連するベースラインよりも高忠実度で合成3Dシーンを生成できることを示した。
論文 参考訳(メタデータ) (2023-03-21T22:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。