Causally-informed Deep Learning towards Explainable and Generalizable Outcomes Prediction in Critical Care
- URL: http://arxiv.org/abs/2502.02109v1
- Date: Tue, 04 Feb 2025 08:43:39 GMT
- Title: Causally-informed Deep Learning towards Explainable and Generalizable Outcomes Prediction in Critical Care
- Authors: Yuxiao Cheng, Xinxin Song, Ziqian Wang, Qin Zhong, Kunlun He, Jinli Suo,
- Abstract summary: We propose causally-informed explainable early prediction model, which leverages causal discovery to identify the underlying causal relationships of prediction.
Benefiting from these features, our approach achieves superior accuracy for 6 different critical deteriorations and achieves better generalizability across different patient groups.
- Score: 11.250103887054912
- License:
- Abstract: Recent advances in deep learning (DL) have prompted the development of high-performing early warning score (EWS) systems, predicting clinical deteriorations such as acute kidney injury, acute myocardial infarction, or circulatory failure. DL models have proven to be powerful tools for various tasks but come with the cost of lacking interpretability and limited generalizability, hindering their clinical applications. To develop a practical EWS system applicable to various outcomes, we propose causally-informed explainable early prediction model, which leverages causal discovery to identify the underlying causal relationships of prediction and thus owns two unique advantages: demonstrating the explicit interpretation of the prediction while exhibiting decent performance when applied to unfamiliar environments. Benefiting from these features, our approach achieves superior accuracy for 6 different critical deteriorations and achieves better generalizability across different patient groups, compared to various baseline algorithms. Besides, we provide explicit causal pathways to serve as references for assistant clinical diagnosis and potential interventions. The proposed approach enhances the practical application of deep learning in various medical scenarios.
Related papers
- Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit.
We introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations.
SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations.
arXiv Detail & Related papers (2025-02-15T06:33:02Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Clinical Risk Prediction Using Language Models: Benefits And
Considerations [23.781690889237794]
This study focuses on using structured descriptions within vocabularies to make predictions exclusively based on that information.
We find that employing LMs to represent structured EHRs leads to improved or at least comparable performance in diverse risk prediction tasks.
arXiv Detail & Related papers (2023-11-29T04:32:19Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Clinical outcome prediction under hypothetical interventions -- a
representation learning framework for counterfactual reasoning [31.97813934144506]
We introduce a new representation learning framework, which considers the provision of counterfactual explanations as an embedded property of the risk model.
Our results suggest that our proposed framework has the potential to help researchers and clinicians improve personalised care.
arXiv Detail & Related papers (2022-05-15T09:41:16Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
We introduce techniques to help bridge this gap between EBM and AI-based clinical models.
We propose a novel system that automatically retrieves patient-specific literature based on intensive care (ICU) patient information.
Our model is able to substantially boost predictive accuracy on three challenging tasks in comparison to strong recent baselines.
arXiv Detail & Related papers (2021-11-16T11:19:02Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.