Predicting Treatment Response in Body Dysmorphic Disorder with Interpretable Machine Learning
- URL: http://arxiv.org/abs/2503.10741v1
- Date: Thu, 13 Mar 2025 17:39:10 GMT
- Title: Predicting Treatment Response in Body Dysmorphic Disorder with Interpretable Machine Learning
- Authors: Omar Costilla-Reyes, Morgan Talbot,
- Abstract summary: Body Dysmorphic Disorder (BDD) is a highly prevalent and frequently underdiagnosed condition.<n>We employ multiple machine learning approaches to predict treatment outcomes.<n>Treatment credibility emerged as the most potent predictor.
- Score: 0.4604003661048266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Body Dysmorphic Disorder (BDD) is a highly prevalent and frequently underdiagnosed condition characterized by persistent, intrusive preoccupations with perceived defects in physical appearance. In this extended analysis, we employ multiple machine learning approaches to predict treatment outcomes -- specifically treatment response and remission -- with an emphasis on interpretability to ensure clinical relevance and utility. Across the various models investigated, treatment credibility emerged as the most potent predictor, surpassing traditional markers such as baseline symptom severity or comorbid conditions. Notably, while simpler models (e.g., logistic regression and support vector machines) achieved competitive predictive performance, decision tree analyses provided unique insights by revealing clinically interpretable threshold values in credibility scores. These thresholds can serve as practical guideposts for clinicians when tailoring interventions or allocating treatment resources. We further contextualize our findings within the broader literature on BDD, addressing technology-based therapeutics, digital interventions, and the psychosocial determinants of treatment engagement. An extensive array of references situates our results within current research on BDD prevalence, suicidality risks, and digital innovation. Our work underscores the potential of integrating rigorous statistical methodologies with transparent machine learning models. By systematically identifying modifiable predictors -- such as treatment credibility -- we propose a pathway toward more targeted, personalized, and ultimately efficacious interventions for individuals with BDD.
Related papers
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Causally-informed Deep Learning towards Explainable and Generalizable Outcomes Prediction in Critical Care [11.250103887054912]
We propose causally-informed explainable early prediction model, which leverages causal discovery to identify the underlying causal relationships of prediction.<n>Benefiting from these features, our approach achieves superior accuracy for 6 different critical deteriorations and achieves better generalizability across different patient groups.
arXiv Detail & Related papers (2025-02-04T08:43:39Z) - Towards Equitable ASD Diagnostics: A Comparative Study of Machine and Deep Learning Models Using Behavioral and Facial Data [2.6353853440763113]
Autism Spectrum Disorder (ASD) is often underdiagnosed in females due to gender-specific symptom differences.
This study evaluates machine learning models, particularly Random Forest and convolutional neural networks, for enhancing ASD diagnosis.
arXiv Detail & Related papers (2024-11-08T05:26:04Z) - HypUC: Hyperfine Uncertainty Calibration with Gradient-boosted
Corrections for Reliable Regression on Imbalanced Electrocardiograms [3.482894964998886]
We propose HypUC, a framework for imbalanced probabilistic regression in medical time series.
HypUC is evaluated on a large, diverse, real-world dataset of ECGs collected from millions of patients.
arXiv Detail & Related papers (2023-11-23T06:17:31Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Representation Learning for Integrating Multi-domain Outcomes to
Optimize Individualized Treatments [6.505217121471555]
For mental disorders, patients' underlying mental states are non-observed latent constructs which have to be inferred from observed measurements.
We propose an integrated learning framework that can simultaneously learn patients' underlying mental states and recommend optimal treatments for each individual.
arXiv Detail & Related papers (2020-10-30T20:30:31Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.