Combinatorial Optimization Perspective based Framework for Multi-behavior Recommendation
- URL: http://arxiv.org/abs/2502.02232v1
- Date: Tue, 04 Feb 2025 11:19:47 GMT
- Title: Combinatorial Optimization Perspective based Framework for Multi-behavior Recommendation
- Authors: Chenhao Zhai, Chang Meng, Yu Yang, Kexin Zhang, Xuhao Zhao, Xiu Li,
- Abstract summary: We propose a novel multi-behavior recommendation framework based on the optimization perspective, named COPF.
In the prediction step, we improve both forward and backward propagation during the generation and aggregation of multiple experts.
Experiments on three real-world datasets indicate the superiority of COPF.
- Score: 23.26102452699347
- License:
- Abstract: In real-world recommendation scenarios, users engage with items through various types of behaviors. Leveraging diversified user behavior information for learning can enhance the recommendation of target behaviors (e.g., buy), as demonstrated by recent multi-behavior methods. The mainstream multi-behavior recommendation framework consists of two steps: fusion and prediction. Recent approaches utilize graph neural networks for multi-behavior fusion and employ multi-task learning paradigms for joint optimization in the prediction step, achieving significant success. However, these methods have limited perspectives on multi-behavior fusion, which leads to inaccurate capture of user behavior patterns in the fusion step. Moreover, when using multi-task learning for prediction, the relationship between the target task and auxiliary tasks is not sufficiently coordinated, resulting in negative information transfer. To address these problems, we propose a novel multi-behavior recommendation framework based on the combinatorial optimization perspective, named COPF. Specifically, we treat multi-behavior fusion as a combinatorial optimization problem, imposing different constraints at various stages of each behavior to restrict the solution space, thus significantly enhancing fusion efficiency (COGCN). In the prediction step, we improve both forward and backward propagation during the generation and aggregation of multiple experts to mitigate negative transfer caused by differences in both feature and label distributions (DFME). Comprehensive experiments on three real-world datasets indicate the superiority of COPF. Further analyses also validate the effectiveness of the COGCN and DFME modules. Our code is available at https://github.com/1918190/COPF.
Related papers
- HEC-GCN: Hypergraph Enhanced Cascading Graph Convolution Network for Multi-Behavior Recommendation [41.65320959602054]
We propose a novel approach named Hypergraph Enhanced Cascading Graph Convolution Network for multi-behavior recommendation (HEC-GCN)
To be specific, we first explore both fine- and coarse-grained correlations among users or items of each behavior by simultaneously modeling the behavior-specific interaction graph and its corresponding hypergraph in a cascaded manner.
arXiv Detail & Related papers (2024-12-19T02:57:02Z) - MDAP: A Multi-view Disentangled and Adaptive Preference Learning Framework for Cross-Domain Recommendation [63.27390451208503]
Cross-domain Recommendation systems leverage multi-domain user interactions to improve performance.
We propose the Multi-view Disentangled and Adaptive Preference Learning framework.
Our framework uses a multiview encoder to capture diverse user preferences.
arXiv Detail & Related papers (2024-10-08T10:06:45Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement [5.734747179463411]
We propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL)
In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions.
We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs.
arXiv Detail & Related papers (2024-04-28T15:13:36Z) - Multi-behavior Self-supervised Learning for Recommendation [36.42241501002167]
We propose a Multi-Behavior Self-Supervised Learning (MBSSL) framework together with an adaptive optimization method.
Specifically, we devise a behavior-aware graph neural network incorporating the self-attention mechanism to capture behavior multiplicity and dependencies.
Experiments on five real-world datasets demonstrate the consistent improvements obtained by MBSSL over ten state-of-the art (SOTA) baselines.
arXiv Detail & Related papers (2023-05-22T15:57:32Z) - Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Stochastic Approach [38.76462300149459]
We develop a Multi-objective Correction (MoCo) method for multi-objective gradient optimization.
The unique feature of our method is that it can guarantee convergence without increasing the non fairness gradient.
arXiv Detail & Related papers (2022-10-23T05:54:26Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios.
The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input.
We propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning framework to learn shared and behavior-specific interests for different behaviors.
arXiv Detail & Related papers (2022-08-03T05:28:14Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Supervised Hyperalignment for multi-subject fMRI data alignment [81.8694682249097]
This paper proposes a Supervised Hyperalignment (SHA) method to ensure better functional alignment for MVP analysis.
Experiments on multi-subject datasets demonstrate that SHA method achieves up to 19% better performance for multi-class problems.
arXiv Detail & Related papers (2020-01-09T09:17:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.