Coreset-Based Task Selection for Sample-Efficient Meta-Reinforcement Learning
- URL: http://arxiv.org/abs/2502.02332v1
- Date: Tue, 04 Feb 2025 14:09:00 GMT
- Title: Coreset-Based Task Selection for Sample-Efficient Meta-Reinforcement Learning
- Authors: Donglin Zhan, Leonardo F. Toso, James Anderson,
- Abstract summary: We study task selection to enhance sample efficiency in model-agnostic meta-reinforcement learning (MAML-RL)
We propose a coreset-based task selection approach that selects a weighted subset of tasks based on how diverse they are in gradient space.
We numerically validate this trend across multiple RL benchmark problems, illustrating the benefits of task selection beyond the LQR baseline.
- Score: 1.2952597101899859
- License:
- Abstract: We study task selection to enhance sample efficiency in model-agnostic meta-reinforcement learning (MAML-RL). Traditional meta-RL typically assumes that all available tasks are equally important, which can lead to task redundancy when they share significant similarities. To address this, we propose a coreset-based task selection approach that selects a weighted subset of tasks based on how diverse they are in gradient space, prioritizing the most informative and diverse tasks. Such task selection reduces the number of samples needed to find an $\epsilon$-close stationary solution by a factor of O(1/$\epsilon$). Consequently, it guarantees a faster adaptation to unseen tasks while focusing training on the most relevant tasks. As a case study, we incorporate task selection to MAML-LQR (Toso et al., 2024b), and prove a sample complexity reduction proportional to O(log(1/$\epsilon$)) when the task specific cost also satisfy gradient dominance. Our theoretical guarantees underscore task selection as a key component for scalable and sample-efficient meta-RL. We numerically validate this trend across multiple RL benchmark problems, illustrating the benefits of task selection beyond the LQR baseline.
Related papers
- Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Provable Benefits of Multi-task RL under Non-Markovian Decision Making
Processes [56.714690083118406]
In multi-task reinforcement learning (RL) under Markov decision processes (MDPs), the presence of shared latent structures has been shown to yield significant benefits to the sample efficiency compared to single-task RL.
We investigate whether such a benefit can extend to more general sequential decision making problems, such as partially observable MDPs (POMDPs) and more general predictive state representations (PSRs)
We propose a provably efficient algorithm UMT-PSR for finding near-optimal policies for all PSRs, and demonstrate that the advantage of multi-task learning manifests if the joint model class of PSR
arXiv Detail & Related papers (2023-10-20T14:50:28Z) - Task Selection and Assignment for Multi-modal Multi-task Dialogue Act
Classification with Non-stationary Multi-armed Bandits [11.682678945754837]
Multi-task learning (MTL) aims to improve the performance of a primary task by jointly learning with related auxiliary tasks.
Previous studies suggest that such a random selection of tasks may not be helpful, and can even be harmful to performance.
This paper proposes a method for selecting and assigning tasks based on non-stationary multi-armed bandits.
arXiv Detail & Related papers (2023-09-18T14:51:51Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
Multitask learning is widely used to train a low-resource target task by augmenting it with multiple related source tasks.
A critical problem in multitask learning is identifying subsets of source tasks that would benefit the target task.
We introduce an efficient procedure to address this problem via surrogate modeling.
arXiv Detail & Related papers (2023-03-25T23:16:11Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning.
The algorithm selects the order of tasks that provide the fastest learning for agents.
We demonstrate that SITP matches or surpasses the results of other curriculum design methods.
arXiv Detail & Related papers (2022-12-30T12:32:43Z) - Selecting task with optimal transport self-supervised learning for
few-shot classification [15.088213168796772]
Few-Shot classification aims at solving problems that only a few samples are available in the training process.
We propose a novel task selecting algorithm, named Optimal Transport Task Selecting (OTTS), to construct a training set by selecting similar tasks for Few-Shot learning.
OTTS measures the task similarity by calculating the optimal transport distance and completes the model training via a self-supervised strategy.
arXiv Detail & Related papers (2022-04-01T08:45:29Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
Meta-Learning [12.215288736524268]
This paper proposes a novel method, ST-MAML, that empowers model-agnostic meta-learning (MAML) to learn from multiple task distributions.
We demonstrate that ST-MAML matches or outperforms the state-of-the-art on two few-shot image classification tasks, one curve regression benchmark, one image completion problem, and a real-world temperature prediction application.
arXiv Detail & Related papers (2021-09-27T18:54:50Z) - Sample Efficient Linear Meta-Learning by Alternating Minimization [74.40553081646995]
We study a simple alternating minimization method (MLLAM) which alternately learns the low-dimensional subspace and the regressors.
We show that for a constant subspace dimension MLLAM obtains nearly-optimal estimation error, despite requiring only $Omega(log d)$ samples per task.
We propose a novel task subset selection scheme that ensures the same strong statistical guarantee as MLLAM.
arXiv Detail & Related papers (2021-05-18T06:46:48Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.