論文の概要: Accurate Pocket Identification for Binding-Site-Agnostic Docking
- arxiv url: http://arxiv.org/abs/2502.02371v1
- Date: Tue, 04 Feb 2025 14:52:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:00:54.703362
- Title: Accurate Pocket Identification for Binding-Site-Agnostic Docking
- Title(参考訳): バインディングサイト非依存ドッキングのための正確なポケット識別
- Authors: Yaroslav Balytskyi, Inna Hubenko, Alina Balytska, Christopher V. Kelly,
- Abstract要約: ドッキングとのシームレスな統合のためのポケットフィンディングアルゴリズムを開発した。
AutoDock Vinaを導く場合、RAPID-NetはPoseBustersベンチマークでDiffBindFRを上回っている。
PUResNetとKalasantyを抜いて、ドッキング精度とポケットリガンドの交差点レートを上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate identification of druggable pockets is essential for structure-based drug design. However, most pocket-identification algorithms prioritize their geometric properties over downstream docking performance. To address this limitation, we developed RAPID-Net, a pocket-finding algorithm for seamless integration with docking workflows. When guiding AutoDock Vina, RAPID-Net outperforms DiffBindFR on the PoseBusters benchmark and enables blind docking on large proteins that AlphaFold 3 cannot process as a whole. Furthermore, RAPID-Net surpasses PUResNet and Kalasanty in docking accuracy and pocket-ligand intersection rates across diverse datasets, including PoseBusters, Astex Diverse Set, BU48, and Coach420. When accuracy is evaluated as ``at least one correct pose in the ensemble'', RAPID-Net outperforms AlphaFold 3 on the PoseBusters benchmark, suggesting that our approach can be further improved with a suitable pose reweighting tool offering a cost-effective and competitive alternative to AlphaFold 3 for docking. Finally, using several therapeutically relevant examples, we demonstrate the ability of RAPID-Net to identify remote functional sites, highlighting its potential to facilitate the development of innovative therapeutics.
- Abstract(参考訳): 薬剤性ポケットの正確な識別は、構造に基づく医薬品設計に不可欠である。
しかし、ほとんどのポケット識別アルゴリズムは、下流ドッキング性能よりも幾何学的特性を優先する。
この制限に対処するため,ドッキングワークフローとのシームレスな統合のためのポケットフィンディングアルゴリズムであるRAPID-Netを開発した。
AutoDock Vinaを指導する際、RAPID-NetはPoseBustersベンチマークでDiffBindFRを上回り、AlphaFold 3では処理できない大きなタンパク質のドッキングを可能にする。
さらにRAPID-Netは、PoseBusters、Astex Diverse Set、BU48、Coach420など、さまざまなデータセット間のドッキング精度とポケットリガンドの交差率において、PUResNetとKalasantyを上回っている。
In least one correct pose in the ensemble''と評価された場合、RAPID-NetはPoseBustersベンチマークでAlphaFold 3より優れており、ドッキング用のAlphaFold 3のコスト効率と競争力のある代替手段として適切なポーズ強調ツールを用いて、我々のアプローチをさらに改善することができることを示唆している。
最後に,RAPID-Netがリモート機能部位を同定し,革新的な治療法の開発を促進する可能性を明らかにする。
関連論文リスト
- Multi-scale Feature Fusion with Point Pyramid for 3D Object Detection [18.41721888099563]
本稿では,POP-RCNN(Point Pyramid RCNN)を提案する。
提案手法は, 様々な既存フレームワークに適用して, 特に長距離検出において, 特徴の豊かさを高めることができる。
論文 参考訳(メタデータ) (2024-09-06T20:13:14Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud [7.711666704468952]
点雲を用いたトラバーサビリティ評価の問題に対処する。
本稿では,垂直に配置された点雲から特徴を捉えるために PointNet を利用した柱状特徴抽出モジュールを提案する。
次に、LIDAR点雲の密度問題に適切に対応できる多フレーム情報を融合する新しい時間的アテンションモジュールを提案する。
論文 参考訳(メタデータ) (2024-06-24T12:01:55Z) - CurbNet: Curb Detection Framework Based on LiDAR Point Cloud Segmentation [8.502741852406904]
本稿では,ポイントクラウドセグメンテーションを利用した検出を抑える新しいフレームワークであるCurbNetを紹介する。
我々はセマンティックKITTIをベースとした3D-Curbデータセットを開発した。
xy平面上の凹凸特性の不均一分布と、z軸に沿った高周波特性への依存による課題に対処するため、マルチスケール・チャネルアテンション(MSCA)モジュールを導入する。
論文 参考訳(メタデータ) (2024-03-25T14:13:09Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - Rethinking Lightweight Salient Object Detection via Network Depth-Width
Tradeoff [26.566339984225756]
既存の有能なオブジェクト検出手法では、より深いネットワークが採用され、性能が向上する。
本稿では,U字形構造を3つの相補枝に分解することで,新しい3方向デコーダフレームワークを提案する。
提案手法は,5つのベンチマークにおいて効率と精度のバランスが良くなることを示す。
論文 参考訳(メタデータ) (2023-01-17T03:43:25Z) - Efficient Person Search: An Anchor-Free Approach [86.45858994806471]
パーソンサーチは、クエリーの人物を、リアルで切り刻まれていない画像から、同時にローカライズし、識別することを目的としている。
この目標を達成するために、最先端モデルは通常、Faster R-CNNのような2段階検出器にre-idブランチを追加する。
本研究では,この課題に対処するためのアンカーフリーな手法を提案する。
論文 参考訳(メタデータ) (2021-09-01T07:01:33Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Triangle-Net: Towards Robustness in Point Cloud Learning [0.0]
本稿では, 回転, 位置シフト, スケーリングに対する不変性を同時に実現し, 点間隔に頑健な3次元分類手法を提案する。
提案手法は,ModelNet 40分類タスクにおいて,ポイントネットと3DmFVをそれぞれ35.0%,28.1%で上回っている。
論文 参考訳(メタデータ) (2020-02-27T20:42:32Z) - Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by
Enabling Input-Adaptive Inference [119.19779637025444]
深層ネットワークは、(クリーンな自然画像の場合)正確さと(敵対的な摂動画像の場合)頑健さの相違に直面することを最近提案された。
本稿では,入力適応推論に関連するマルチエグジットネットワークについて検討し,モデル精度,ロバスト性,効率の最適化において「スイートポイント」を達成する上での強い期待を示す。
論文 参考訳(メタデータ) (2020-02-24T00:40:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。