論文の概要: AI-Powered, But Power-Hungry? Energy Efficiency of LLM-Generated Code
- arxiv url: http://arxiv.org/abs/2502.02412v1
- Date: Tue, 04 Feb 2025 15:32:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:02:30.643253
- Title: AI-Powered, But Power-Hungry? Energy Efficiency of LLM-Generated Code
- Title(参考訳): AIを動力とするが電力を消費する? LLM生成符号のエネルギー効率
- Authors: Lola Solovyeva, Sophie Weidmann, Fernando Castor,
- Abstract要約: 本稿では,Python,Java,C++の3つのプログラミング言語に対して,LLM生成コードのエネルギー効率と性能を初めて解析する。
結果から,C++ コードよりも Python と Java の生成に成功していることがわかった。
- 参考スコア(独自算出の注目度): 45.77395425799378
- License:
- Abstract: Large language models (LLMs) are used in software development to assist in various tasks, e.g., code generation and code completion, but empirical evaluations of the quality of the results produced by these models focus on correctness and ignore other relevant aspects, such as their performance and energy efficiency. Studying the performance of LLM-produced programs is essential to understand how well LLMs can support the construction of performance- and energy-critical software, such as operating systems, servers, and mobile applications. This paper presents the first study analyzing the energy efficiency and performance of LLM-generated code for three programming languages Python, Java, and C++, on two platforms, a Mac and a PC, leveraging three frontier LLMs, Github Copilot, GPT-4o, and the recently-released OpenAI o1-mini, and targeting ``hard'' programming problems from LeetCode. Our results show that the models are much more successful in generating Python and Java than C++ code.
- Abstract(参考訳): 大規模言語モデル(LLM)は、例えばコード生成やコード補完といった様々なタスクを支援するためにソフトウェア開発で使用されるが、これらのモデルによって生成された結果の品質を実証的に評価することは、正確性に焦点を当て、その性能やエネルギー効率などの他の関連する側面を無視している。
LLMによるプログラムの性能調査は,オペレーティングシステムやサーバ,モバイルアプリケーションなど,性能・エネルギークリティカルなソフトウェアの構築を支援する上で重要である。
本稿では,Python,Java,C++の3言語,Mac,PC,Github Copilot, GPT-4o, および最近リリースされたOpenAI o1-miniの3つのフロンティア LLM を活用し,LeetCode の 'hard'' プログラム問題を対象とした LLM 生成コードのエネルギー効率と性能解析を行った。
結果から,C++ コードよりも Python と Java の生成に成功していることがわかった。
関連論文リスト
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Can Large-Language Models Help us Better Understand and Teach the Development of Energy-Efficient Software? [2.8812501020074968]
エネルギー効率のよいソフトウェア工学の技術は、しばしば学部のカリキュラムから欠落している。
本稿では,エネルギー効率のよいソフトウェアのための学習用モジュールの開発について提案する。
論文 参考訳(メタデータ) (2024-10-30T01:09:32Z) - Large Language Models for Energy-Efficient Code: Emerging Results and Future Directions [2.848398051763324]
エネルギー効率向上のための符号として,大規模言語モデル (LLM) の新たな適用法を提案する。
我々はプロトタイプを記述し評価し、我々のシステムでは、コンパイラの最適化だけで最大2倍のエネルギー効率を向上できる6つの小さなプログラムを探索した。
論文 参考訳(メタデータ) (2024-10-11T20:35:40Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Performance-Aligned LLMs for Generating Fast Code [2.180216161965907]
コードLLMの出力と性能を一致させる強化学習に基づく手法を提案する。
我々は,一連のベンチマークタスクのベースモデル上でのコード生成の高速化を,微調整モデルにより改善できることを実証した。
論文 参考訳(メタデータ) (2024-04-29T16:52:38Z) - On Evaluating the Efficiency of Source Code Generated by LLMs [31.8121544062256]
より効率的なコードは、LCM支援プログラミングで完了したプログラムやソフトウェアの性能と実行効率を向上させる。
まず,HumanEval と MBPP の2つのベンチマークで LLM が生成したコードの有効性を評価する。
そして,オンライン審査プラットフォームLeetCodeから,より難しい評価を行うために,一連のプログラミング問題を選択する。
論文 参考訳(メタデータ) (2024-04-09T05:59:39Z) - Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming [12.355284125578342]
大規模言語モデル(LLM)は、現代のソフトウェア開発の焦点となっている。
LLMは、インテリジェントでチャット駆動のプログラミングアシスタントとして機能することで、開発者の生産性を大幅に向上する可能性がある。
しかし、それぞれのシステムは、最高のパフォーマンスを確保するために、LLMをそのワークスペースに向ける必要がある。
論文 参考訳(メタデータ) (2024-02-22T03:51:34Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。