論文の概要: Large Language Models for Energy-Efficient Code: Emerging Results and Future Directions
- arxiv url: http://arxiv.org/abs/2410.09241v1
- Date: Fri, 11 Oct 2024 20:35:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:33:30.169224
- Title: Large Language Models for Energy-Efficient Code: Emerging Results and Future Directions
- Title(参考訳): エネルギー効率の良いコードのための大規模言語モデル:新たな結果と今後の方向性
- Authors: Huiyun Peng, Arjun Gupte, Nicholas John Eliopoulos, Chien Chou Ho, Rishi Mantri, Leo Deng, Wenxin Jiang, Yung-Hsiang Lu, Konstantin Läufer, George K. Thiruvathukal, James C. Davis,
- Abstract要約: エネルギー効率向上のための符号として,大規模言語モデル (LLM) の新たな適用法を提案する。
我々はプロトタイプを記述し評価し、我々のシステムでは、コンパイラの最適化だけで最大2倍のエネルギー効率を向上できる6つの小さなプログラムを探索した。
- 参考スコア(独自算出の注目度): 2.848398051763324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy-efficient software helps improve mobile device experiences and reduce the carbon footprint of data centers. However, energy goals are often de-prioritized in order to meet other requirements. We take inspiration from recent work exploring the use of large language models (LLMs) for different software engineering activities. We propose a novel application of LLMs: as code optimizers for energy efficiency. We describe and evaluate a prototype, finding that over 6 small programs our system can improve energy efficiency in 3 of them, up to 2x better than compiler optimizations alone. From our experience, we identify some of the challenges of energy-efficient LLM code optimization and propose a research agenda.
- Abstract(参考訳): エネルギー効率の良いソフトウェアは、モバイルデバイスのエクスペリエンスを改善し、データセンターの二酸化炭素排出量を減らすのに役立つ。
しかし、エネルギーの目標は、他の要件を満たすためにしばしば非優先順位化される。
私たちは、さまざまなソフトウェアエンジニアリング活動に大規模な言語モデル(LLM)を使用することを探求する最近の研究から着想を得ています。
エネルギー効率向上のためのコードオプティマイザとして, LLM の新たな応用を提案する。
我々はプロトタイプを記述し評価し、我々のシステムでは、コンパイラの最適化だけで最大2倍のエネルギー効率を向上できる6つの小さなプログラムを探索した。
我々の経験から、エネルギー効率のよいLLM符号最適化の課題をいくつか特定し、研究課題を提案する。
関連論文リスト
- Can Large-Language Models Help us Better Understand and Teach the Development of Energy-Efficient Software? [2.8812501020074968]
エネルギー効率のよいソフトウェア工学の技術は、しばしば学部のカリキュラムから欠落している。
本稿では,エネルギー効率のよいソフトウェアのための学習用モジュールの開発について提案する。
論文 参考訳(メタデータ) (2024-10-30T01:09:32Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Measuring Code Efficiency Optimization Capabilities with ACEOB [7.4056083791645495]
モデルトレーニングデータセットの「コードパターン」を詳細に分析し、人間の手書きコードを慎重に探索する。
95,359組の効率非効率コードからなる自動コード効率最適化ベンチマーク(ACEOB)を導入する。
私たちの知る限り、ACEOBはPythonコードの効率最適化に特化した最初のデータセットです。
論文 参考訳(メタデータ) (2024-08-23T10:10:37Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
大規模言語モデル(LLM)は、幅広いプログラミングタスクを解く上で強力な能力を示している。
本稿では,パフォーマンス向上に着目したコード最適化について検討する。
論文 参考訳(メタデータ) (2024-06-17T16:10:10Z) - A Controlled Experiment on the Energy Efficiency of the Source Code Generated by Code Llama [4.937787069991124]
ソフトウェア開発者の83%がコード生成にLLM(Large Language Models)を使用している。
本稿では,人手によるソースコードに関して,コードラマのエネルギー効率を評価する。
論文 参考訳(メタデータ) (2024-05-06T16:32:29Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
大規模言語モデル(LLM)は、ユーザが仕事を達成するのを助けるアシスタントとして機能し、高度なアプリケーションの開発をサポートする。
LLMの幅広い応用にとって、推論効率は重要な問題であり、既存の研究で広く研究されている。
各種コードライブラリの推論性能の粗大な解析を行う。
論文 参考訳(メタデータ) (2024-04-17T15:57:50Z) - On Evaluating the Efficiency of Source Code Generated by LLMs [31.8121544062256]
より効率的なコードは、LCM支援プログラミングで完了したプログラムやソフトウェアの性能と実行効率を向上させる。
まず,HumanEval と MBPP の2つのベンチマークで LLM が生成したコードの有効性を評価する。
そして,オンライン審査プラットフォームLeetCodeから,より難しい評価を行うために,一連のプログラミング問題を選択する。
論文 参考訳(メタデータ) (2024-04-09T05:59:39Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - A Metaheuristic-based Machine Learning Approach for Energy Prediction in
Mobile App Development [1.933681537640272]
本稿では,モバイルアプリケーション開発におけるエネルギー予測のために,メタヒューリスティックなアプローチによって強化されたヒストグラムに基づく勾配促進分類装置(HGBC)を提案する。
以上の結果から,線形集団サイズ (L-SHADE) の差分進化に対する成功史に基づくパラメータ適応が最適であることがわかった。
論文 参考訳(メタデータ) (2023-06-16T16:01:50Z) - Effective Pre-Training Objectives for Transformer-based Autoencoders [97.99741848756302]
トランスフォーマーエンコーダの効率,コスト,精度のトレードオフについて検討する。
共通の目的の機能を組み合わせて、新しい効果的な事前学習アプローチを作成します。
論文 参考訳(メタデータ) (2022-10-24T18:39:44Z) - Learning Implicit Priors for Motion Optimization [105.11889448885226]
エネルギーベースモデル(EBM)は、表現力のある確率密度分布を表す。
本稿では,EMMを動作最適化に適用するために必要となるモデリングとアルゴリズムの選択について述べる。
論文 参考訳(メタデータ) (2022-04-11T19:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。