Robust and Conjugate Spatio-Temporal Gaussian Processes
- URL: http://arxiv.org/abs/2502.02450v1
- Date: Tue, 04 Feb 2025 16:16:01 GMT
- Title: Robust and Conjugate Spatio-Temporal Gaussian Processes
- Authors: William Laplante, Matias Altamirano, Andrew Duncan, Jeremias Knoblauch, François-Xavier Briol,
- Abstract summary: We adapt and specialise the robust RCGP framework of Altamirano al et al.
We obtain an-robust-temporal GP with a comparable computational cost to classical-temporal GPs.
We study our method extensively in finance and weather applications.
- Score: 7.0029761533393495
- License:
- Abstract: State-space formulations allow for Gaussian process (GP) regression with linear-in-time computational cost in spatio-temporal settings, but performance typically suffers in the presence of outliers. In this paper, we adapt and specialise the robust and conjugate GP (RCGP) framework of Altamirano et al. (2024) to the spatio-temporal setting. In doing so, we obtain an outlier-robust spatio-temporal GP with a computational cost comparable to classical spatio-temporal GPs. We also overcome the three main drawbacks of RCGPs: their unreliable performance when the prior mean is chosen poorly, their lack of reliable uncertainty quantification, and the need to carefully select a hyperparameter by hand. We study our method extensively in finance and weather forecasting applications, demonstrating that it provides a reliable approach to spatio-temporal modelling in the presence of outliers.
Related papers
- Inference at the data's edge: Gaussian processes for modeling and inference under model-dependency, poor overlap, and extrapolation [0.0]
The Gaussian Process (GP) is a flexible non-linear regression approach.
It provides a principled approach to handling our uncertainty over predicted (counterfactual) values.
This is especially valuable under conditions of extrapolation or weak overlap.
arXiv Detail & Related papers (2024-07-15T05:09:50Z) - Robust and Conjugate Gaussian Process Regression [6.417777780911224]
We show how to perform robust and conjugate Gaussian process (RCGP) regression at virtually no additional cost using generalised Bayesian inference.
RCGP is particularly versatile as it enables exact conjugate closed form updates in all settings where standard GPs admit them.
arXiv Detail & Related papers (2023-11-01T11:57:43Z) - Optimal Stopping with Gaussian Processes [2.126171264016785]
We show that structural properties commonly exhibited by financial time series allow the use of Gaussian and Deep Gaussian Process models.
We additionally quantify uncertainty in the value function by propagating the price model through the optimal stopping analysis.
We show that our family of algorithms outperforms benchmarks on three historical time series datasets.
arXiv Detail & Related papers (2022-09-22T21:19:27Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Uncertainty quantification using martingales for misspecified Gaussian
processes [52.22233158357913]
We address uncertainty quantification for Gaussian processes (GPs) under misspecified priors.
We construct a confidence sequence (CS) for the unknown function using martingale techniques.
Our CS is statistically valid and empirically outperforms standard GP methods.
arXiv Detail & Related papers (2020-06-12T17:58:59Z) - Sequential Gaussian Processes for Online Learning of Nonstationary
Functions [9.997259201098602]
We propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference.
Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data.
arXiv Detail & Related papers (2019-05-24T02:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.