論文の概要: EasySpec: Layer-Parallel Speculative Decoding for Efficient Multi-GPU Utilization
- arxiv url: http://arxiv.org/abs/2502.02493v1
- Date: Tue, 04 Feb 2025 17:09:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:30.056492
- Title: EasySpec: Layer-Parallel Speculative Decoding for Efficient Multi-GPU Utilization
- Title(参考訳): EasySpec: 効率的なマルチGPU利用のためのレイヤ並列投機的デコーディング
- Authors: Yize Wu, Ke Gao, Yanjun Wu,
- Abstract要約: EasySpecは、マルチGPU利用効率を最適化する層並列投機戦略である。
バニラ復号と比較してピーク速度は4.17倍に達する。
ドラフトステージは最大1.62倍まで加速でき、最大精度は7%しか低下しない。
- 参考スコア(独自算出の注目度): 11.31996515243674
- License:
- Abstract: Speculative decoding is an effective and lossless method for Large Language Model (LLM) inference acceleration. It employs a smaller model to generate a draft token sequence, which is then verified by the original base model. In multi-GPU systems, inference latency can be further reduced through tensor parallelism (TP), while the optimal TP size of the draft model is typically smaller than that of the base model, leading to GPU idling during the drafting stage. To solve this problem, we propose EasySpec, a layer-parallel speculation strategy that optimizes the efficiency of multi-GPU utilization.EasySpec breaks the sequential execution order of layers in the drafting model, enabling multi-layer parallelization across devices, albeit with some induced approximation errors. After each drafting-and-verification iteration, the draft model's key-value (KV) cache is calibrated in a single forward pass, preventing long-term error accumulation at minimal additional latency. We evaluated EasySpec on several mainstream open-source LLMs, using smaller versions of models from the same series as drafters. The results demonstrate that EasySpec can achieve a peak speedup of 4.17x compared to vanilla decoding, while preserving the original distribution of the base LLMs. Specifically, the drafting stage can be accelerated by up to 1.62x with a maximum accuracy drop of only 7%, requiring no training or fine-tuning on the draft models.
- Abstract(参考訳): 投機的復号法はLarge Language Model (LLM) の推論高速化に有効でロスレスな手法である。
より小さなモデルを使用してドラフトトークンシーケンスを生成し、元のベースモデルによって検証される。
マルチGPUシステムでは、推論レイテンシはテンソル並列性(TP)によってさらに小さくすることができるが、ドラフトモデルの最適TPサイズは一般的にベースモデルのそれよりも小さくなり、ドラフト段階でGPUアイドリングが発生する。
この問題を解決するために,多GPU利用効率を最適化する層並列投機戦略であるEasySpecを提案する。EasySpecは起草モデルにおけるレイヤのシーケンシャルな実行順序を破り,デバイス間でのマルチ層並列化を実現する。
ドラフトと検証の各イテレーションの後、ドラフトモデルのキーバリュー(KV)キャッシュは、単一のフォワードパスでキャリブレーションされる。
我々は,複数の主要なオープンソース LLM 上で EasySpec の評価を行った。
その結果、EasySpecはバニラ復号法に比べて4.17倍のピーク速度を達成でき、ベースLLMのオリジナル分布を保存できることがわかった。
具体的には、ドラフト段階は最大1.62倍まで加速でき、最大精度は7%しか低下せず、ドラフトモデルの訓練や微調整は不要である。
関連論文リスト
- ParallelSpec: Parallel Drafter for Efficient Speculative Decoding [62.68430939686566]
提案するParallelSpecは,最先端の投機的復号化手法における自己回帰的起草戦略の代替となる。
投機段階における自己回帰的起草とは対照的に,効率的な投機モデルとして機能する並列投機を訓練する。
論文 参考訳(メタデータ) (2024-10-08T01:05:08Z) - Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - Direct Alignment of Draft Model for Speculative Decoding with Chat-Fine-Tuned LLMs [11.245862832561176]
投機的復号化による推論アクセラレーションを実現するためには、高品質なドラフトモデルをトレーニングする必要がある。
我々は、Llama 2 Chat Drafter 115M、Llama 2 Chat 7B以上のドラフトモデル、オリジナルサイズの1.64%しか持たないLlama 2 Chat Drafter 115Mを訓練する。
Llama 2 Chat Dr After 115M with speculative decoding は最大2.3ブロック効率と2.4$times$ speed-upを実現している。
論文 参考訳(メタデータ) (2024-02-29T19:55:06Z) - Ouroboros: Generating Longer Drafts Phrase by Phrase for Faster Speculative Decoding [65.94521678103237]
投機的復号化(英: Speculative decoding)は、大規模言語モデルの生成プロセスを加速する広く使われている手法である。
我々は,草案作成プロセスの並列化のために,草案文を生成するOuroborosを紹介した。
ウロボロは投機的復号化で最大2.8倍、バニラ復号化で3.9倍のスピードアップを達成できる。
論文 参考訳(メタデータ) (2024-02-21T11:31:28Z) - GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative
Decoding [81.01996600734616]
GliDe と CaPE を導入し,バニラ投機復号への2つの低ハードル修正を行った。
GliDeは、ターゲットのLLMからキャッシュされたキーと値を再利用する、修正されたドラフトモデルアーキテクチャである。
コード、データ、トレーニング済みのドラフトモデルをリリースします。
論文 参考訳(メタデータ) (2024-02-03T08:44:11Z) - Cascade Speculative Drafting for Even Faster LLM Inference [25.642604897018852]
投機的復号化により、大言語モデル(LLM)推論の効率が向上する。
本稿では2種類のカスケードを組み込んだ投機的実行アルゴリズムであるカスケード投機ドラフト(CS Drafting)を紹介する。
CS Draftingは、我々の実験で投機的復号化よりも81%の高速化を実現している。
論文 参考訳(メタデータ) (2023-12-18T18:59:46Z) - DistillSpec: Improving Speculative Decoding via Knowledge Distillation [70.61777015900272]
投機的復号(SD)は、複数のトークンを生成するためにより高速なドラフトモデルを使用することで、大きな言語モデル推論を加速する。
本稿では,SDを適用する前に,知識蒸留を用いて,ドラフトモデルとターゲットモデルとの整合性を向上するDistillSpecを提案する。
DistillSpecは標準SDよりも10~45%のスピードアップを実現しています。
論文 参考訳(メタデータ) (2023-10-12T16:21:04Z) - Online Speculative Decoding [34.987825705622555]
大規模言語モデルの推論を高速化するオンライン投機的復号法を導入する。
主なアイデアは、観測されたユーザクエリデータに対する(複数)ドラフトモデルを継続的に更新することである。
本稿では,知識蒸留に基づくオンライン投機的デコーディングのプロトタイプを開発し,合成データと実データの両方を用いて評価する。
論文 参考訳(メタデータ) (2023-10-11T04:03:42Z) - Fast Model Editing at Scale [77.69220974621425]
MEND(Gradient Decomposition)を用いたモデルエディタネットワークを提案する。
MENDは、所望の入力出力ペアを使って、訓練済みのモデルに高速で局所的な編集を行う、小さな補助的な編集ネットワークの集合である。
MENDは100億以上のパラメータモデルであっても、1日以内で1つのGPUでトレーニングすることができる。
論文 参考訳(メタデータ) (2021-10-21T17:41:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。