論文の概要: The Causal-Effect Score in Data Management
- arxiv url: http://arxiv.org/abs/2502.02495v2
- Date: Tue, 18 Feb 2025 00:04:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:01:33.868297
- Title: The Causal-Effect Score in Data Management
- Title(参考訳): データ管理における因果影響スコア
- Authors: Felipe Azua, Leopoldo Bertossi,
- Abstract要約: 因果効果(英: Causal Effect, CE)は、観測結果に対する変数の因果影響の数値的な尺度である。
古典的および確率的データベースの文脈において、いわゆるCausal-Effect Scoreを導入し、検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The Causal Effect (CE) is a numerical measure of causal influence of variables on observed results. Despite being widely used in many areas, only preliminary attempts have been made to use CE as an attribution score in data management, to measure the causal strength of tuples for query answering in databases. In this work, we introduce, generalize and investigate the so-called Causal-Effect Score in the context of classical and probabilistic databases.
- Abstract(参考訳): 因果効果(英: Causal Effect, CE)は、観測結果に対する変数の因果影響の数値的な尺度である。
多くの分野で広く使われているが、データベースにおけるクエリ応答のためのタプルの因果強度を測定するために、CEをデータ管理の属性スコアとして使うための予備的な試みが試みられている。
本研究では,古典的および確率的データベースの文脈において,いわゆるCausal-Effect Scoreを導入,一般化し,検討する。
関連論文リスト
- Causal Fine-Tuning and Effect Calibration of Non-Causal Predictive Models [1.3124513975412255]
本稿では,無作為な実験データを用いた因果推論のための非因果モデルの性能向上手法を提案する。
広告、顧客の保持、精密医療のような領域では、介入なしの結果を予測する非因果モデルはしばしば、介入の期待された効果に応じて個人をスコアしランク付けするために使用される。
論文 参考訳(メタデータ) (2024-06-13T20:18:16Z) - Do Finetti: On Causal Effects for Exchangeable Data [45.96632286841583]
データをi.i.d.に含まない環境での因果効果の推定について検討する。
我々は、独立因果関係の仮定を満たす交換可能なデータに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-29T07:31:18Z) - Understanding the Impact of Competing Events on Heterogeneous Treatment
Effect Estimation from Time-to-Event Data [92.51773744318119]
本研究では,競合イベントの存在下での時間-時間データからヘテロジニアス処理効果(HTE)を推定する問題について検討する。
提案手法は,HTEを推定するための結果モデリング手法であり,既存の時間-時間データの予測モデルを,将来的な結果のプラグイン推定手段としてどのように利用できるかを検討する。
HTEの推定に汎用的な機械学習予測モデルを使用する場合、これらの課題がいつどのように機能するかを理論的に分析し、実証的に説明する。
論文 参考訳(メタデータ) (2023-02-23T14:28:55Z) - NESTER: An Adaptive Neurosymbolic Method for Causal Effect Estimation [37.361149306896024]
観測データからの因果効果推定は因果推論における中心的な問題である。
我々はニューロシンボリック因果効果推定器(NESTER)という適応手法を提案する。
我々の総合的な実験結果から、NESTERはベンチマークデータセットの最先端手法よりも優れた性能を示している。
論文 参考訳(メタデータ) (2022-11-08T16:48:46Z) - An evaluation framework for comparing causal inference models [3.1372269816123994]
提案手法を用いて、いくつかの最先端因果効果推定モデルを比較した。
このアプローチの背後にある主な動機は、少数のインスタンスやシミュレーションがベンチマークプロセスに与える影響を取り除くことである。
論文 参考訳(メタデータ) (2022-08-31T21:04:20Z) - Valid Inference After Causal Discovery [73.87055989355737]
我々は、因果関係発見後の推論に有効なツールを開発する。
因果発見とその後の推論アルゴリズムの組み合わせは,高度に膨らんだ誤発見率をもたらすことを示す。
論文 参考訳(メタデータ) (2022-08-11T17:40:45Z) - Impact of Pretraining Term Frequencies on Few-Shot Reasoning [51.990349528930125]
事前学習された言語モデルが、事前学習データにおいてあまり頻度の低い用語でどの程度理にかなっているかを検討する。
我々は,様々な数値推論タスクにおいて,GPTに基づく言語モデルに対して,この相関関係の強さを計測する。
LMは数秒の数値推論タスクにおいて高い性能を示すが,本研究の結果は,事前学習データを超えるモデルが実際にどれだけ一般化されるのかという疑問を提起する。
論文 参考訳(メタデータ) (2022-02-15T05:43:54Z) - Causal Effect Estimation using Variational Information Bottleneck [19.6760527269791]
因果推論とは、介入が適用されるときの因果関係における因果効果を推定することである。
変分情報ボトルネック(CEVIB)を用いて因果効果を推定する手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T13:46:12Z) - Multi-Source Causal Inference Using Control Variates [81.57072928775509]
本稿では,複数のデータソースから因果効果を推定するアルゴリズムを提案する。
理論的には、これはATE推定値の分散を減少させる。
このフレームワークを結果選択バイアスの下で観測データからの推論に適用する。
論文 参考訳(メタデータ) (2021-03-30T21:20:51Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。