論文の概要: Learning to generate physical ocean states: Towards hybrid climate modeling
- arxiv url: http://arxiv.org/abs/2502.02499v1
- Date: Tue, 04 Feb 2025 17:14:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:29.332962
- Title: Learning to generate physical ocean states: Towards hybrid climate modeling
- Title(参考訳): 物理的海洋状態の学習 : ハイブリッド気候モデリングを目指して
- Authors: Etienne Meunier, David Kamm, Guillaume Gachon, Redouane Lguensat, Julie Deshayes,
- Abstract要約: オーシャン・ジェネラル・サーキュレーション・モデル (Ocean General Circulation Models) は、平衡状態に達するためには広範な計算資源を必要とする。
ディープラーニングエミュレータは、高速な予測を提供するが、気候科学者に必要な物理的解釈可能性や長期的な安定性は欠如している。
我々は、深部生成モデルを利用して物理的に一貫した海洋状態を生成することにより、両方の世界から最善を尽くすことを提案する。
- 参考スコア(独自算出の注目度): 1.5845117761091052
- License:
- Abstract: Ocean General Circulation Models require extensive computational resources to reach equilibrium states, while deep learning emulators, despite offering fast predictions, lack the physical interpretability and long-term stability necessary for climate scientists to understand climate sensitivity (to greenhouse gas emissions) and mechanisms of abrupt % variability such as tipping points. We propose to take the best from both worlds by leveraging deep generative models to produce physically consistent oceanic states that can serve as initial conditions for climate projections. We assess the viability of this hybrid approach through both physical metrics and numerical experiments, and highlight the benefits of enforcing physical constraints during generation. Although we train here on ocean variables from idealized numerical simulations, we claim that this hybrid approach, combining the computational efficiency of deep learning with the physical accuracy of numerical models, can effectively reduce the computational burden of running climate models to equilibrium, and reduce uncertainties in climate projections by minimizing drifts in baseline simulations.
- Abstract(参考訳): 海洋一般循環モデル(Ocean General Circulation Models)は、平衡状態に達するためには広範な計算資源を必要とするが、深層学習エミュレータは、高速な予測を提供するが、気候科学者が気候の感度(温室効果ガス放出)を理解するのに必要な物理的解釈可能性と長期的な安定性を欠いている。
我々は、深部生成モデルを利用して、気候予測の初期条件として機能する物理的に一貫した海洋状態を生成することにより、両方の世界から最善を尽くすことを提案する。
物理メトリクスと数値実験の両方を通して、このハイブリッドアプローチの有効性を評価し、生成時の物理的制約を強制する利点を強調した。
ここでは、理想的な数値シミュレーションから海洋変数を学習するが、このハイブリッドアプローチは、ディープラーニングの計算効率と数値モデルの物理精度を組み合わせることで、実行中の気候モデルの平衡への計算負担を効果的に低減し、ベースラインシミュレーションにおけるドリフトを最小化することで、気候予測の不確実性を低減できると主張している。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model [22.255982502297197]
高解像度の気候シミュレーションは、気候変動の影響を理解し、適応策を計画するのに有用である。
CPMGEMは,イングランドやウェールズの高分解能モデルからの降水シミュレーションをはるかに低コストでエミュレートするために,生成機械学習モデルの新たな応用である拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-07-19T09:42:20Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
統計力学の重要な原理を実装した連続時間プロセスであるClimODEを提案する。
ClimODEは、値保存ダイナミクスによる正確な気象進化をモデル化し、ニューラルネットワークとしてグローバルな気象輸送を学習する。
提案手法は,大域的,地域的予測において,パラメータ化の桁違いで既存のデータ駆動手法より優れる。
論文 参考訳(メタデータ) (2024-04-15T06:38:21Z) - Towards Causal Representations of Climate Model Data [18.82507552857727]
この研究は因果表現学習の可能性、特に単一パーセンシャル・デコーディング(CDSD)法によるemphCausal Discoveryの可能性を掘り下げるものである。
以上の結果から,CDSDをより解釈可能で堅牢な気候モデルエミュレーションへのステップストーンとして使用するという課題,限界,約束が明らかになった。
論文 参考訳(メタデータ) (2023-12-05T16:13:34Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
本稿では,エネルギー収支モデルの物理温度応答方程式を満たすデータ駆動エミュレータであるFaIRGPを紹介する。
本稿では,FaIRGPを用いて大気上層放射力の推定値を得る方法について述べる。
この研究が、気候エミュレーションにおけるデータ駆動手法の採用の拡大に寄与することを期待している。
論文 参考訳(メタデータ) (2023-07-14T08:43:36Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
気候モデルは、気候変動が気候変動に与える影響を理解する上で重要な役割を担い、気候変動のリスクを軽減し、決定を通知する。
コミュニティアース・システム・モデル (CESM) のような大域的な気候モデルは、大気、陸、海、氷の相互作用を記述する数百万行のコードで非常に複雑である。
私たちの研究は、木に基づくアルゴリズムやディープニューラルネットワークのような確率論的手法を使って、高次元および人為的なデータの統計的に厳密な適合性テストを行います。
論文 参考訳(メタデータ) (2020-10-08T15:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。