論文の概要: LLMs for Generation of Architectural Components: An Exploratory Empirical Study in the Serverless World
- arxiv url: http://arxiv.org/abs/2502.02539v1
- Date: Tue, 04 Feb 2025 18:06:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:02:30.028992
- Title: LLMs for Generation of Architectural Components: An Exploratory Empirical Study in the Serverless World
- Title(参考訳): LLMs for Generation of Architectural Components: An Exploratory Empirical Study in the Serverless World
- Authors: Shrikara Arun, Meghana Tedla, Karthik Vaidhyanathan,
- Abstract要約: 本稿では,関数・アズ・ア・サービス(F)のためのアーキテクチャコンポーネントを生成するための大規模言語モデルの有用性について検討する。
アーキテクチャコンポーネントの小さなサイズは、このアーキテクチャスタイルを現在のLLMを使って生成可能にする。
我々は、リポジトリに存在する既存のテストを通じて正確性を評価し、ソフトウェア工学(SE)と自然言語処理(NLP)ドメインのメトリクスを使用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recently, the exponential growth in capability and pervasiveness of Large Language Models (LLMs) has led to significant work done in the field of code generation. However, this generation has been limited to code snippets. Going one step further, our desideratum is to automatically generate architectural components. This would not only speed up development time, but would also enable us to eventually completely skip the development phase, moving directly from design decisions to deployment. To this end, we conduct an exploratory study on the capability of LLMs to generate architectural components for Functions as a Service (FaaS), commonly known as serverless functions. The small size of their architectural components make this architectural style amenable for generation using current LLMs compared to other styles like monoliths and microservices. We perform the study by systematically selecting open source serverless repositories, masking a serverless function and utilizing state of the art LLMs provided with varying levels of context information about the overall system to generate the masked function. We evaluate correctness through existing tests present in the repositories and use metrics from the Software Engineering (SE) and Natural Language Processing (NLP) domains to evaluate code quality and the degree of similarity between human and LLM generated code respectively. Along with our findings, we also present a discussion on the path forward for using GenAI in architectural component generation.
- Abstract(参考訳): 近年、LLM(Large Language Models)の能力と普及度が指数関数的に向上し、コード生成の分野で大きな成果を上げている。
しかし、この世代はコードスニペットに限られている。
さらに一歩進んだのは、アーキテクチャコンポーネントを自動的に生成することです。
これは開発時間を短縮するだけでなく、最終的には開発フェーズを完全にスキップして、設計上の決定からデプロイメントへの直接移行を可能にします。
この目的のために、サーバーレス関数として知られるFaaS(Function as a Service)のアーキテクチャコンポーネントを生成するLLMの能力に関する探索的研究を行う。
アーキテクチャコンポーネントの小さなサイズは、このアーキテクチャスタイルを、モノリスやマイクロサービスのような他のスタイルと比較して、現在のLLMを使用して生成可能にする。
我々は、オープンソースのサーバーレスリポジトリを体系的に選択し、サーバーレス機能をマスキングし、システム全体に関するさまざまなレベルのコンテキスト情報を提供して、マスキング関数を生成する。
我々は,レポジトリに存在する既存のテストを通じて正確性を評価し,ソフトウェア工学(SE)と自然言語処理(NLP)ドメインのメトリクスを用いて,コード品質とLLM生成コードの類似度をそれぞれ評価する。
また, アーキテクチャコンポーネント生成におけるGenAIの活用への道筋についても検討した。
関連論文リスト
- The Compressor-Retriever Architecture for Language Model OS [20.56093501980724]
オペレーティングシステム(OS)のコアコンポーネントとして言語モデルを用いるという概念について検討する。
このようなLM OSを実現する上で重要な課題は、寿命の長いコンテキストを管理し、セッション間のステートフルネスを確保することだ。
本稿では,生涯のコンテキスト管理のために設計されたモデル非依存アーキテクチャであるコンプレッサー・レトリバーを紹介する。
論文 参考訳(メタデータ) (2024-09-02T23:28:15Z) - DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation [48.11754113512047]
この研究には、コード生成ベンチマークデータセットであるDOMAINEVALが含まれており、6つの人気のあるドメインを含んでいる。
私たちのパイプラインは完全に自動化され、コードリポジトリから研究対象のフォーマットへのプッシュボットの構築が可能になります。
本研究のコントリビューションには、コード生成ベンチマークデータセットであるDOMAINEVAL、コードベンチマークを構築するための完全自動化パイプライン、DOMAINEVALのパフォーマンスに基づいたコード生成タスクにおけるLLMの制限の識別が含まれている。
論文 参考訳(メタデータ) (2024-08-23T16:33:58Z) - Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository [4.767858874370881]
実世界のリポジトリ内でクラスレベルのコードを生成する際に,LLMを厳格に評価するためのベンチマークであるRepoClassBenchを紹介する。
RepoClassBenchには、リポジトリの選択からJava、Python、C#にまたがる"Natural Language to Class Generation"タスクが含まれている。
Retrieve-Repotools-Reflect (RRR)は,レポジトリレベルのコンテキストを反復的にナビゲートし,推論する静的解析ツールを備えた新しいアプローチである。
論文 参考訳(メタデータ) (2024-04-22T03:52:54Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Advancing Transformer Architecture in Long-Context Large Language
Models: A Comprehensive Survey [18.930417261395906]
トランスフォーマーベースの大規模言語モデル(LLM)は、知識ベース、ヒューマンインタフェース、動的エージェントなど様々な分野に適用されている。
本稿では,トランスフォーマーをベースとしたLLMアーキテクチャの最近の進歩について,LLMの長期的コンテキスト能力の向上を目的とした調査を行う。
論文 参考訳(メタデータ) (2023-11-21T04:59:17Z) - Evaluating In-Context Learning of Libraries for Code Generation [35.57902679044737]
大規模言語モデル(LLM)は高いレベルのコード生成と理解能力を示す。
近年の研究では、大規模プロプライエタリなLLMがデモから新しいライブラリの使用法を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-16T07:37:25Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。