論文の概要: Bayesian Parameter Shift Rule in Variational Quantum Eigensolvers
- arxiv url: http://arxiv.org/abs/2502.02625v1
- Date: Tue, 04 Feb 2025 14:44:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:28:14.289432
- Title: Bayesian Parameter Shift Rule in Variational Quantum Eigensolvers
- Title(参考訳): 変分量子固有解法におけるベイズパラメータシフト則
- Authors: Samuele Pedrielli, Christopher J. Anders, Lena Funcke, Karl Jansen, Kim A. Nicoli, Shinichi Nakajima,
- Abstract要約: 本稿では、適切なカーネルを持つガウス過程を用いてVQE目標の勾配を推定するベイズ変法を提案する。
勾配降下(SGD)では、ベイズPSRの柔軟性により、前のステップでの観測の再利用が可能となり、最適化プロセスが加速される。
数値実験の結果,ベイジアンPSRとGradCoReによるVQE最適化はSGDを著しく高速化し,最先端の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 4.431744869863552
- License:
- Abstract: Parameter shift rules (PSRs) are key techniques for efficient gradient estimation in variational quantum eigensolvers (VQEs). In this paper, we propose its Bayesian variant, where Gaussian processes with appropriate kernels are used to estimate the gradient of the VQE objective. Our Bayesian PSR offers flexible gradient estimation from observations at arbitrary locations with uncertainty information and reduces to the generalized PSR in special cases. In stochastic gradient descent (SGD), the flexibility of Bayesian PSR allows the reuse of observations in previous steps, which accelerates the optimization process. Furthermore, the accessibility to the posterior uncertainty, along with our proposed notion of gradient confident region (GradCoRe), enables us to minimize the observation costs in each SGD step. Our numerical experiments show that the VQE optimization with Bayesian PSR and GradCoRe significantly accelerates SGD and outperforms the state-of-the-art methods, including sequential minimal optimization.
- Abstract(参考訳): パラメータシフト規則(PSRs)は、変分量子固有解法(VQEs)における効率的な勾配推定の鍵となる手法である。
本稿では、適切なカーネルを持つガウス過程を用いてVQE目標の勾配を推定するベイズ変法を提案する。
我々のベイズPSRは、不確実な情報を持つ任意の場所での観測からフレキシブルな勾配推定を提供し、特別な場合には一般化PSRに還元する。
確率勾配降下(SGD)では、ベイズPSRの柔軟性により、前のステップでの観測の再利用が可能となり、最適化プロセスが加速される。
さらに、後続の不確実性へのアクセシビリティは、グラッドコレ(GradCoRe)の概念とともに、各SGDステップにおける観測コストを最小化することができる。
数値実験により,ベイジアンPSRとGradCoReによるVQE最適化はSGDを著しく高速化し,逐次最小化を含む最先端の手法よりも優れていることが示された。
関連論文リスト
- Improving Discrete Optimisation Via Decoupled Straight-Through Gumbel-Softmax [4.427325225595673]
提案手法は,複数のタスクやデータセットにまたがる広範な実験を通じて,元のST-GSを大幅に向上することを示す。
本研究は,ディープラーニングにおける離散最適化の改善に寄与する。
論文 参考訳(メタデータ) (2024-10-17T08:44:57Z) - Efficient Quantum Gradient and Higher-order Derivative Estimation via Generalized Hadamard Test [2.5545813981422882]
パラメータ化量子回路(PQC)の動作を理解するためには、勾配に基づく手法が不可欠である
有限差分、シフト規則、アダマール試験、直接アダマール試験などの既存の勾配推定法は、特定のPQCに対して最適な勾配回路を得ることが多い。
本稿では,一階勾配推定法に適用したフレキシブル・アダマールテスト(Flexible Hadamard Test)を提案する。
また、PQ内の個々のパラメータに対する最適勾配推定手法を適応的に選択する統一勾配法である量子自動微分(QAD)を導入する。
論文 参考訳(メタデータ) (2024-08-10T02:08:54Z) - Physics-Informed Bayesian Optimization of Variational Quantum Circuits [13.530592183149661]
本稿では,変分量子固有解法(VQEs)のベイズ最適化手法を提案する。
量子回路に関する重要な事前情報を含むVQE-カーネルを導出する。
我々はまた、信頼領域(EMICoRe)に対する最大改善(Maximum Improvement)と呼ばれるベイズ最適化のための新しい獲得関数を提案する。
論文 参考訳(メタデータ) (2024-06-10T10:17:06Z) - Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
via Reparameterisation and Smoothing [1.6114012813668932]
微分不可能な関数を断片的に定義するための単純なフレームワークを導入し,スムース化を得るための体系的なアプローチを提案する。
我々の主な貢献は SGD の新たな変種 Diagonalisation Gradient Descent であり、滑らかな近似の精度を徐々に向上させる。
我々のアプローチは単純で高速で安定であり、作業正規化分散の桁数削減を実現している。
論文 参考訳(メタデータ) (2024-02-19T00:43:22Z) - Adaptive Step Sizes for Preconditioned Stochastic Gradient Descent [0.3831327965422187]
本稿では,勾配降下(SGD)における適応ステップサイズに対する新しいアプローチを提案する。
我々は、勾配に対するリプシッツ定数と探索方向の局所的分散の概念という、数値的にトレース可能な量を用いる。
論文 参考訳(メタデータ) (2023-11-28T17:03:56Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - On Signal-to-Noise Ratio Issues in Variational Inference for Deep
Gaussian Processes [55.62520135103578]
重み付き変分推論を用いたDGP(Deep Gaussian Processs)の訓練で用いられる勾配推定は,信号-雑音比(SNR)問題の影響を受けやすいことを示す。
DGPモデルの予測性能が一貫した改善につながることを示す。
論文 参考訳(メタデータ) (2020-11-01T14:38:02Z) - Variance Reduction for Deep Q-Learning using Stochastic Recursive
Gradient [51.880464915253924]
深層Q-ラーニングアルゴリズムは、過度な分散を伴う勾配推定に苦しむことが多い。
本稿では、SRG-DQNと呼ばれる新しいアルゴリズムを実現するため、深層Q-ラーニングにおける勾配推定を更新するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-25T00:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。