論文の概要: A Training-Free Length Extrapolation Approach for LLMs: Greedy Attention Logit Interpolation (GALI)
- arxiv url: http://arxiv.org/abs/2502.02659v1
- Date: Tue, 04 Feb 2025 19:01:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 16:28:50.825376
- Title: A Training-Free Length Extrapolation Approach for LLMs: Greedy Attention Logit Interpolation (GALI)
- Title(参考訳): LLMのトレーニング不要長外挿法:Greedy Attention Logit Interpolation (GALI)
- Authors: Yan Li, Tianyi Zhang, Zechuan Li, Soyeon Caren Han,
- Abstract要約: Greedy Attention Logit Interpolation (GALI) は、トレーニング不要な長さ外挿法であり、事前訓練された位置間隔の利用を最大化する。
GalIは、最先端のトレーニングフリーメソッドを一貫して上回っている。
- 参考スコア(独自算出の注目度): 13.581522432715952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based Large Language Models (LLMs) struggle to process inputs exceeding their training context window, with performance degrading due to positional out-of-distribution (O.O.D.) that disrupt attention computations. Existing solutions, fine-tuning and training-free methods, are limited by computational inefficiency, attention logit outliers or loss of local positional information. To address this, we propose Greedy Attention Logit Interpolation (GALI), a training-free length extrapolation method that maximizes the utilization of pretrained positional intervals while avoiding attention logit outliers through attention logit interpolation. The result demonstrates that GALI consistently outperforms state-of-the-art training-free methods. Our findings reveal that LLMs interpret positional intervals unevenly within their training context window, suggesting that extrapolating within a smaller positional interval range yields superior results-even for short-context tasks. GALI represents a significant step toward resolving the positional O.O.D. challenge, enabling more reliable long-text understanding in LLMs. Our implementation of GALI, along with the experiments from our paper, is open-sourced at https://github.com/AcademyCityL/GALI.
- Abstract(参考訳): Transformer-based Large Language Models (LLMs) は、注意計算を妨害する位置分布(O.O.D.)による性能低下により、トレーニングコンテキストウインドウを超える入力を処理するのに苦労している。
既存のソリューション、微調整と訓練なしの手法は、計算の非効率性、アテンションロジットのアウトレイア、局所的な位置情報の喪失によって制限される。
そこで本研究では,注意ログを用いた注意ログ外挿による注意ログ外挿を回避しつつ,事前学習した位置間隔の利用を最大化する,トレーニング不要な長さ外挿法であるGreedy Attention Logit Interpolation (GALI)を提案する。
その結果、GALIは最先端のトレーニングフリーメソッドよりも一貫して優れていた。
その結果,LLMはトレーニングコンテキストウィンドウ内で位置間隔を不均一に解釈し,より小さい位置間隔範囲で外挿することで,短いコンテキストタスクでも優れた結果が得られることが示唆された。
GALIはO.O.D.の課題を解決するための重要なステップであり、LLMのより信頼性の高い長文理解を可能にしている。
GALIの実装と論文の実験はhttps://github.com/AcademyCityL/GALIで公開されている。
関連論文リスト
- LaMPE: Length-aware Multi-grained Positional Encoding for Adaptive Long-context Scaling Without Training [45.74983991122073]
大規模言語モデル(LLM)は、入力が事前学習されたコンテキストウインドウを超えると、大幅な性能低下を経験する。
近年の研究では、OOD位置を固定写像戦略で分配範囲に再配置することでこの問題を緩和している。
本研究では,Longth-aware Multi-grained Positional Scaling (LaMPE)を提案する。
論文 参考訳(メタデータ) (2025-08-04T11:22:13Z) - Beyond Fixed: Variable-Length Denoising for Diffusion Large Language Models [74.15250326312179]
拡散大言語モデルは効率的な並列生成とグローバルモデリングを提供する。
DLLMの主流の応用は、静的に事前定義された生成長の必要性によって妨げられている。
DAEDALは,動的適応長拡張を可能にする新しい学習自由化戦略である。
論文 参考訳(メタデータ) (2025-08-01T17:56:07Z) - END: Early Noise Dropping for Efficient and Effective Context Denoising [60.24648712022382]
大規模言語モデル(LLM)は、幅広い自然言語処理タスクにおいて顕著な性能を示している。
彼らはしばしば、出力品質を低下させる入力シーケンスにおける無関係またはノイズの文脈に気を散らされる。
我々は,LLMの微調整を必要とせず,この問題を緩和するための新しい手法であるEarly Noise Dropping (textscEND)を紹介した。
論文 参考訳(メタデータ) (2025-02-26T08:07:17Z) - Pause-Tuning for Long-Context Comprehension: A Lightweight Approach to LLM Attention Recalibration [4.7429246847107835]
本稿では,長文入力の理解を深めるために注意を喚起する手法である停止チューニングを導入する。
提案手法では,ポーズトークンを人工的に挿入したデータセット上での言語モデルを微調整する。
本稿では,Needle-in-a-Haystackベンチマークを用いて,代替手法に対する停止チューニングを評価する。
論文 参考訳(メタデータ) (2025-02-01T21:47:15Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
検索強化生成(RAG)から非実効出力を検出する軽量な手法を提案する。
私たちは、二項決定を下すためにしきい値にできる事実性スコアを計算します。
実験の結果, ROC曲線 (AUC) の下では, 関連するオープンソースデータセットの広範囲にわたって高い面積を示すことができた。
論文 参考訳(メタデータ) (2024-11-01T20:44:59Z) - Why Does the Effective Context Length of LLMs Fall Short? [68.34573617977013]
本稿では,SifTed Rotray 位置埋め込み (STRING) について紹介する。
ストリングは、トレーニング中の元の非効率な位置を上書きするために、よく訓練された位置をシフトし、既存のトレーニング期間内でのパフォーマンスを向上させる。
実験結果から, STRINGは最新の大規模モデルの性能を劇的に向上させることがわかった。
論文 参考訳(メタデータ) (2024-10-24T13:51:50Z) - Aligning Large Language Models with Representation Editing: A Control Perspective [38.71496554018039]
人間の目的に合わせて微調整された大規模言語モデル(LLM)は、現実世界のアプリケーションには不可欠である。
プロンプトやガイドデコードといったテスト時のアライメント技術は、基礎となるモデルを変更しない。
表現編集によるLLMの整合性を提案する。
論文 参考訳(メタデータ) (2024-06-10T01:21:31Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
MTSFのためのクロスモーダルLCMファインチューニング(CALF)フレームワークを提案する。
分散の相違を低減するため,クロスモーダルマッチングモジュールを開発した。
CALFは、長期および短期の予測タスクの最先端のパフォーマンスを確立する。
論文 参考訳(メタデータ) (2024-03-12T04:04:38Z) - Found in the Middle: How Language Models Use Long Contexts Better via
Plug-and-Play Positional Encoding [78.36702055076456]
本稿では,マルチスケール位置決めについて紹介する。
(Ms-PoE)は、シンプルで効果的なプラグアンドプレイ方式で、キャパシティを向上させる。
LLMはコンテキストの中央に位置する関連情報を扱う。
論文 参考訳(メタデータ) (2024-03-05T04:58:37Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Extending LLMs' Context Window with 100 Samples [42.52554295241792]
LLM(Large Language Models)は、事前訓練されたコンテキストウィンドウを超えて、外挿能力に制限があることが知られている。
最近の研究は回転位置埋め込み(RoPE)を改良してコンテキストウィンドウを拡張しようとしている。
我々は、RoPEのベース周波数の調整と注意ログのスケーリングを組み合わせて、LLMがより大きなコンテキストウインドウに効率的に適応するのに役立つ新しい拡張をRoPEに導入する。
論文 参考訳(メタデータ) (2024-01-13T07:57:01Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
現在の手法は、補助的なタスクを訓練したり、高価な粗大な見積もりを適用したりするための外部データに依存している。
そこで我々は, 簡易かつ効率的に適用可能な, 逆学習に基づく新しい手法を開発した。
実世界の5つのクラウドカウントベンチマークに対するアプローチを評価し、既存のアプローチを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-05-12T02:23:25Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - KL Guided Domain Adaptation [88.19298405363452]
ドメイン適応は重要な問題であり、現実世界のアプリケーションにしばしば必要である。
ドメイン適応文学における一般的なアプローチは、ソースとターゲットドメインに同じ分布を持つ入力の表現を学ぶことである。
確率的表現ネットワークにより、KL項はミニバッチサンプルにより効率的に推定できることを示す。
論文 参考訳(メタデータ) (2021-06-14T22:24:23Z) - Jointly Optimizing Dataset Size and Local Updates in Heterogeneous
Mobile Edge Learning [11.191719032853527]
本稿では、リソース制約のある無線エッジを介して接続された学習者を対象に訓練された分散機械学習(ML)モデルの精度を最大化する。
我々は,各学習者の不均一なコミュニケーションと計算能力を考慮して,ローカル/グローバルな更新数とタスクサイズ割り当てを共同で最適化し,損失を最小限に抑える。
論文 参考訳(メタデータ) (2020-06-12T18:19:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。