Learning to Double Guess: An Active Perception Approach for Estimating the Center of Mass of Arbitrary Objects
- URL: http://arxiv.org/abs/2502.02663v1
- Date: Tue, 04 Feb 2025 19:03:21 GMT
- Title: Learning to Double Guess: An Active Perception Approach for Estimating the Center of Mass of Arbitrary Objects
- Authors: Shengmiao Jin, Yuchen Mo, Wenzhen Yuan,
- Abstract summary: We introduce U-GRAPH: Uncertainty-Guided Rotational Active Perception with Haptics, a novel framework to enhance the center of mass estimation using active perception.
Traditional methods often rely on single interaction and are limited by the inherent inaccuracies of Force-Torque (F/T) sensors.
We demonstrate the remarkable generalizability and transferability of our method with training on a small dataset with limited variation yet still perform well on unseen complex real-world objects.
- Score: 9.790979989019952
- License:
- Abstract: Manipulating arbitrary objects in unstructured environments is a significant challenge in robotics, primarily due to difficulties in determining an object's center of mass. This paper introduces U-GRAPH: Uncertainty-Guided Rotational Active Perception with Haptics, a novel framework to enhance the center of mass estimation using active perception. Traditional methods often rely on single interaction and are limited by the inherent inaccuracies of Force-Torque (F/T) sensors. Our approach circumvents these limitations by integrating a Bayesian Neural Network (BNN) to quantify uncertainty and guide the robotic system through multiple, information-rich interactions via grid search and a neural network that scores each action. We demonstrate the remarkable generalizability and transferability of our method with training on a small dataset with limited variation yet still perform well on unseen complex real-world objects.
Related papers
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - Deep Active Perception for Object Detection using Navigation Proposals [39.52573252842573]
We propose a generic supervised active perception pipeline for object detection.
It can be trained using existing off-the-shelf object detectors, while also leveraging advances in simulation environments.
The proposed method was evaluated on synthetic datasets, constructed within the Webots robotics simulator.
arXiv Detail & Related papers (2023-12-15T20:55:52Z) - Distributionally Robust Statistical Verification with Imprecise Neural
Networks [4.094049541486327]
A particularly challenging problem in AI safety is providing guarantees on the behavior of high-dimensional autonomous systems.
This paper proposes a novel approach based on a combination of active learning, uncertainty quantification, and neural network verification.
arXiv Detail & Related papers (2023-08-28T18:06:24Z) - Sequential Neural Barriers for Scalable Dynamic Obstacle Avoidance [7.375976854181687]
We propose a novel method for compositional learning of Sequential Neural Control Barrier models (SNCBFs)
Our approach exploits an important observation: the spatial interaction patterns of multiple dynamic obstacles can be decomposed and predicted through temporal sequences of states for each obstacle.
We demonstrate the benefits of the proposed methods in improving dynamic collision avoidance in comparison with existing methods.
arXiv Detail & Related papers (2023-07-06T14:24:17Z) - Rotating Features for Object Discovery [74.1465486264609]
We present Rotating Features, a generalization of complex-valued features to higher dimensions, and a new evaluation procedure for extracting objects from distributed representations.
Together, these advancements enable us to scale distributed object-centric representations from simple toy to real-world data.
arXiv Detail & Related papers (2023-06-01T12:16:26Z) - Centralizing State-Values in Dueling Networks for Multi-Robot
Reinforcement Learning Mapless Navigation [87.85646257351212]
We study the problem of multi-robot mapless navigation in the popular Training and Decentralized Execution (CTDE) paradigm.
This problem is challenging when each robot considers its path without explicitly sharing observations with other robots.
We propose a novel architecture for CTDE that uses a centralized state-value network to compute a joint state-value.
arXiv Detail & Related papers (2021-12-16T16:47:00Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Learning Physical Constraints with Neural Projections [16.09436906471513]
We propose a new family of neural networks to predict the behaviors of physical systems by learning their underpinning constraints.
A neural projection operator lies at the heart of our approach, composed of a lightweight network with an embedded recursion architecture.
We demonstrated the efficacy of our approach by learning a set of challenging physical systems all in a unified and simple fashion.
arXiv Detail & Related papers (2020-06-23T04:19:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.