論文の概要: 3D Foundation AI Model for Generalizable Disease Detection in Head Computed Tomography
- arxiv url: http://arxiv.org/abs/2502.02779v1
- Date: Tue, 04 Feb 2025 23:42:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:28:40.045772
- Title: 3D Foundation AI Model for Generalizable Disease Detection in Head Computed Tomography
- Title(参考訳): 頭部CTにおける汎用性疾患検出のための3次元ファンデーションAIモデル
- Authors: Weicheng Zhu, Haoxu Huang, Huanze Tang, Rushabh Musthyala, Boyang Yu, Long Chen, Emilio Vega, Thomas O'Donnell, Seena Dehkharghani, Jennifer A. Frontera, Arjun V. Masurkar, Kara Melmed, Narges Razavian,
- Abstract要約: 本稿では,頭部CTの基礎モデルであるFM-CTについて紹介する。
提案手法では,手動アノテーションを必要とせずに,361,663個の非コントラスト3次元頭部CTスキャンの大規模データセット上で,ディープラーニングモデルを事前学習する。
以上の結果から, 自己監督基盤モデルにより下流診断における性能が著しく向上することが示唆された。
- 参考スコア(独自算出の注目度): 8.896955286474991
- License:
- Abstract: Head computed tomography (CT) imaging is a widely-used imaging modality with multitudes of medical indications, particularly in assessing pathology of the brain, skull, and cerebrovascular system. It is commonly the first-line imaging in neurologic emergencies given its rapidity of image acquisition, safety, cost, and ubiquity. Deep learning models may facilitate detection of a wide range of diseases. However, the scarcity of high-quality labels and annotations, particularly among less common conditions, significantly hinders the development of powerful models. To address this challenge, we introduce FM-CT: a Foundation Model for Head CT for generalizable disease detection, trained using self-supervised learning. Our approach pre-trains a deep learning model on a large, diverse dataset of 361,663 non-contrast 3D head CT scans without the need for manual annotations, enabling the model to learn robust, generalizable features. To investigate the potential of self-supervised learning in head CT, we employed both discrimination with self-distillation and masked image modeling, and we construct our model in 3D rather than at the slice level (2D) to exploit the structure of head CT scans more comprehensively and efficiently. The model's downstream classification performance is evaluated using internal and three external datasets, encompassing both in-distribution (ID) and out-of-distribution (OOD) data. Our results demonstrate that the self-supervised foundation model significantly improves performance on downstream diagnostic tasks compared to models trained from scratch and previous 3D CT foundation models on scarce annotated datasets. This work highlights the effectiveness of self-supervised learning in medical imaging and sets a new benchmark for head CT image analysis in 3D, enabling broader use of artificial intelligence for head CT-based diagnosis.
- Abstract(参考訳): 頭部CT(Head Computed Tomography, CT)画像は, 脳, 頭蓋骨, 脳血管系の病態を評価するために, 多数の医学的指標を用いた画像モダリティとして広く用いられている。
画像取得、安全性、コスト、ユビキティの迅速さを考えると、神経疾患における最初のラインイメージングである。
ディープラーニングモデルは、幅広い病気の検出を容易にする可能性がある。
しかし、特にあまり一般的でない条件の中で、高品質なラベルやアノテーションの不足は、強力なモデルの開発を著しく妨げている。
この課題に対処するために, FM-CT: 自己教師型学習を用いて訓練した, 汎用性疾患検出のための頭部CTの基礎モデルを提案する。
提案手法では,手動アノテーションを必要とせずに,361,663個の非コントラスト3次元頭部CTスキャンの大規模データセット上で,ディープラーニングモデルを事前学習することにより,堅牢で一般化可能な特徴を学習することができる。
頭部CTにおける自己教師あり学習の可能性を検討するために, 自己蒸留とマスク画像モデリングの両手法を用いて, 頭部CTスキャンの構造をより包括的かつ効率的に活用するために, スライスレベル(2D)ではなく3次元モデルを構築した。
モデルの下流分類性能は、内部および3つの外部データセットを用いて評価され、分布内(ID)と分布外(OOD)の両方のデータを含んでいる。
以上の結果から, 自己教師型基礎モデルでは, スクラッチから訓練したモデルや, 少ない注釈付きデータセットを用いた従来の3次元CT基礎モデルと比較して, 下流診断における性能が有意に向上することが示唆された。
本研究は, 医用画像診断における自己教師型学習の有効性を強調し, 頭部CT画像解析のための新しいベンチマークを3次元で設定し, 頭部CT診断に人工知能を広く活用することを可能にした。
関連論文リスト
- Vision Foundation Models for Computed Tomography [0.5320113414681007]
基礎モデル(FM)は、画像のモダリティを越えて多種多様な複雑なタスクを実行することにより、放射線学における変換可能性を示している。
そこで我々はCT-FM(CT-FM)を開発した。
CT-FMは画像データコモンズから148,000個のCTスキャンを用いてラベルに依存しないコントラスト学習によって事前訓練を行った。
論文 参考訳(メタデータ) (2025-01-15T18:30:58Z) - Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Self-supervised Model Based on Masked Autoencoders Advance CT Scans
Classification [0.0]
本稿では,自己教師付き学習アルゴリズムMAEに着想を得た。
ImageNetで事前トレーニングされたMAEモデルを使用して、CT Scansデータセット上で転送学習を実行する。
この方法はモデルの一般化性能を改善し、小さなデータセットに過度に適合するリスクを回避する。
論文 参考訳(メタデータ) (2022-10-11T00:52:05Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
本稿では,OCT画像から網膜疾患を検出するために,新たな深層アンサンブル畳み込みニューラルネットワークを提案する。
本モデルは,2つの頑健な畳み込みモデルの学習アーキテクチャを用いて,リッチかつマルチレゾリューションな特徴を生成する。
2つのデータセットに関する実験と、他のよく知られた深層畳み込みニューラルネットワークとの比較により、アーキテクチャが分類精度を最大5%向上できることが証明された。
論文 参考訳(メタデータ) (2022-03-03T17:51:01Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Application of Homomorphic Encryption in Medical Imaging [60.51436886110803]
医療画像の予測にHEを用いて,不正な二次的データの使用を防止できることを示す。
結節検出に3次元胸部CT-Scansを用いた実験を行った。
論文 参考訳(メタデータ) (2021-10-12T19:57:12Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。