論文の概要: Vision Foundation Models for Computed Tomography
- arxiv url: http://arxiv.org/abs/2501.09001v1
- Date: Wed, 15 Jan 2025 18:30:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:51:43.742336
- Title: Vision Foundation Models for Computed Tomography
- Title(参考訳): コンピュータ断層撮影のためのビジョン基礎モデル
- Authors: Suraj Pai, Ibrahim Hadzic, Dennis Bontempi, Keno Bressem, Benjamin H. Kann, Andriy Fedorov, Raymond H. Mak, Hugo J. W. L. Aerts,
- Abstract要約: 基礎モデル(FM)は、画像のモダリティを越えて多種多様な複雑なタスクを実行することにより、放射線学における変換可能性を示している。
そこで我々はCT-FM(CT-FM)を開発した。
CT-FMは画像データコモンズから148,000個のCTスキャンを用いてラベルに依存しないコントラスト学習によって事前訓練を行った。
- 参考スコア(独自算出の注目度): 0.5320113414681007
- License:
- Abstract: Foundation models (FMs) have shown transformative potential in radiology by performing diverse, complex tasks across imaging modalities. Here, we developed CT-FM, a large-scale 3D image-based pre-trained model designed explicitly for various radiological tasks. CT-FM was pre-trained using 148,000 computed tomography (CT) scans from the Imaging Data Commons through label-agnostic contrastive learning. We evaluated CT-FM across four categories of tasks, namely, whole-body and tumor segmentation, head CT triage, medical image retrieval, and semantic understanding, showing superior performance against state-of-the-art models. Beyond quantitative success, CT-FM demonstrated the ability to cluster regions anatomically and identify similar anatomical and structural concepts across scans. Furthermore, it remained robust across test-retest settings and indicated reasonable salient regions attached to its embeddings. This study demonstrates the value of large-scale medical imaging foundation models and by open-sourcing the model weights, code, and data, aims to support more adaptable, reliable, and interpretable AI solutions in radiology.
- Abstract(参考訳): 基礎モデル(FM)は、画像のモダリティを越えて多種多様な複雑なタスクを実行することにより、放射線学における変換可能性を示している。
そこで我々はCT-FM(CT-FM)を開発した。
CT-FMは画像データコモンズから148,000個のCTスキャンを用いてラベルに依存しないコントラスト学習によって事前訓練を行った。
頭部CT,頭部CT,医用画像検索,意味理解の4分野にまたがってCT-FMを評価し,最先端モデルに対して優れた性能を示した。
定量的な成功に加えて、CT-FMは、解剖学的に領域をクラスタリングし、スキャン全体で類似した解剖学的および構造的概念を識別する能力を示した。
さらに、テスト-テスト設定全体にわたって堅牢であり、埋め込みにアタッチされた合理的な正常な領域を示す。
本研究は,大規模医用画像基盤モデルの価値を実証し,モデルウェイト,コード,データをオープンソース化することによって,放射線学におけるより適応性,信頼性,解釈可能なAIソリューションをサポートすることを目的とする。
関連論文リスト
- SegBook: A Simple Baseline and Cookbook for Volumetric Medical Image Segmentation [20.026663367994356]
大量のフルボディCT画像は、強力なモデルを事前訓練する機会を提供する。
これらの事前訓練されたモデルが、下流の様々な医療セグメンテーションタスクに移行できる状況は、まだ不明である。
我々は,全体CT事前訓練モデルの転写能力を評価するために,モダリティ,ターゲット,サンプルサイズが異なる87の公開データセットを収集した。
論文 参考訳(メタデータ) (2024-11-21T19:00:01Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CTはCT-RATEに基づく大規模3次元胸部CT解釈データセットである。
私たちは、最新の強力なユニバーサルセグメンテーションと大きな言語モデルを活用して、元のデータセットを拡張します。
論文 参考訳(メタデータ) (2024-04-25T17:11:37Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Towards Generalist Foundation Model for Radiology by Leveraging
Web-scale 2D&3D Medical Data [66.9359934608229]
この研究はRadFMと呼ばれるRadlogy Foundation Modelの開発を開始することを目的としている。
われわれの知る限りでは、これは2Dスキャンと3Dスキャンによる、最初の大規模で高品質な医療用ビジュアル言語データセットである。
本稿では,モダリティ認識,疾患診断,視覚的質問応答,レポート生成,合理的診断の5つのタスクからなる新しい評価ベンチマークRadBenchを提案する。
論文 参考訳(メタデータ) (2023-08-04T17:00:38Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
過剰な電離放射線は、体に決定論的かつ有害な影響をもたらす可能性がある。
本稿では,CTプロジェクションの再構成を学習する深層学習モデルを提案する。
論文 参考訳(メタデータ) (2022-02-02T13:25:23Z) - Body Part Regression for CT Images [0.0]
CTボリュームの自己教師付き身体部分回帰モデルを開発し、異種CT研究の収集に基づいて訓練した。
本研究は, このアルゴリズムが医療モデルの医院への堅牢かつ信頼性の高い移行にどのように貢献するかを示す。
論文 参考訳(メタデータ) (2021-10-18T10:03:42Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。