論文の概要: AI-driven materials design: a mini-review
- arxiv url: http://arxiv.org/abs/2502.02905v1
- Date: Wed, 05 Feb 2025 05:59:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:23:58.781474
- Title: AI-driven materials design: a mini-review
- Title(参考訳): AI駆動型マテリアルデザイン:ミニレビュー
- Authors: Mouyang Cheng, Chu-Liang Fu, Ryotaro Okabe, Abhijatmedhi Chotrattanapituk, Artittaya Boonkird, Nguyen Tuan Hung, Mingda Li,
- Abstract要約: 過去数十年の材料設計における重要な計算の進歩を要約する。
我々は,従来のスクリーニング手法から,深層生成モデルによって駆動される逆生成へのパラダイムシフトを強調した。
このレビューは、将来の機能性材料の設計のアプローチ、進展、展望の簡単なガイドとして機能するかもしれない。
- 参考スコア(独自算出の注目度): 1.2773749417703923
- License:
- Abstract: Materials design is an important component of modern science and technology, yet traditional approaches rely heavily on trial-and-error and can be inefficient. Computational techniques, enhanced by modern artificial intelligence (AI), have greatly accelerated the design of new materials. Among these approaches, inverse design has shown great promise in designing materials that meet specific property requirements. In this mini-review, we summarize key computational advancements for materials design over the past few decades. We follow the evolution of relevant materials design techniques, from high-throughput forward machine learning (ML) methods and evolutionary algorithms, to advanced AI strategies like reinforcement learning (RL) and deep generative models. We highlight the paradigm shift from conventional screening approaches to inverse generation driven by deep generative models. Finally, we discuss current challenges and future perspectives of materials inverse design. This review may serve as a brief guide to the approaches, progress, and outlook of designing future functional materials with technological relevance.
- Abstract(参考訳): 材料設計は現代科学技術の重要な要素であるが、伝統的なアプローチは試行錯誤に大きく依存しており、非効率である。
現代の人工知能(AI)によって強化された計算技術は、新しい材料の設計を大幅に加速させた。
これらの手法の中で、逆設計は特定の特性要件を満たす材料の設計において大きな可能性を示してきた。
このミニレビューでは、過去数十年の材料設計における重要な計算の進歩について要約する。
我々は、高スループットのフォワード機械学習(ML)手法や進化アルゴリズムから、強化学習(RL)や深層生成モデルといった先進的なAI戦略まで、関連する材料設計技術の進化に従います。
我々は,従来のスクリーニング手法から,深層生成モデルによって駆動される逆生成へのパラダイムシフトを強調した。
最後に,材料逆設計の課題と今後の展望について論じる。
このレビューは、技術関連で将来の機能性材料を設計するためのアプローチ、進歩、展望の簡単なガイドとして機能するかもしれない。
関連論文リスト
- AI-driven inverse design of materials: Past, present and future [5.813167950821478]
人間は長い間、多数の実験を通じて新しい物質を探索し、新しい物質の性質と構造を予測するための対応する理論システムを提案してきた。
計算能力の向上により、研究者は徐々に様々な電子構造計算手法を開発してきた。
近年,計算機科学分野における人工知能技術の急速な発展により,材料特性と構造との暗黙的関連が効果的に評価されるようになった。
生成的および識別的モデルに基づく素材の逆設計において顕著な進歩が見られ、研究者から広く注目を集めている。
論文 参考訳(メタデータ) (2024-11-14T13:25:04Z) - Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
大規模なニューラルネットワークは予測タスクに優れるが、タンパク質工学や材料発見といった設計問題への応用には、オフラインモデルベース最適化(MBO)の問題を解決する必要がある。
機能的グラフィカルモデル(FGM)を用いてブラックボックス関数の構造を学習するトランスフォーマーベースのアーキテクチャであるCliqueformerを提案する。
化学および遺伝子設計タスクを含む様々な領域において、Cliqueformerは既存の方法よりも優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-17T00:35:47Z) - Artificial intelligence inspired freeform optics design: a review [5.118772741438762]
この記事では、フリーフォーム光学設計におけるAIアプリケーションの最新開発についてレビューする。
これは、データ要求、モデル解釈可能性、計算複雑性といった課題と共に、精度とパフォーマンスの改善など、AIの利点に対処する。
フリーフォーム光学設計におけるAIの未来は、ハイブリッドデザイン手法、解釈可能なAI、AI駆動製造、特定のアプリケーションを対象とした研究の潜在的な進歩とともに、有望に思われる。
論文 参考訳(メタデータ) (2024-09-18T00:53:27Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - Generative AI Models for Different Steps in Architectural Design: A Literature Review [14.910709576423576]
生成AIモデルの原則と進歩を理解し、アーキテクチャアプリケーションにおけるそれらの関連性を分析することが不可欠である。
本稿ではまず,確率拡散モデル(DDPM),3次元生成モデル,基礎モデルを中心に,生成AI技術の概要を紹介する。
建築設計プロセスを6段階に分割し、2020年から現在までの各段階における関連する研究プロジェクトについてレビューする。
論文 参考訳(メタデータ) (2024-03-30T13:25:11Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Review of Large Vision Models and Visual Prompt Engineering [50.63394642549947]
レビューは、大きな視覚モデルと視覚プロンプトエンジニアリングのためにコンピュータビジョン領域で使用される手法を要約することを目的としている。
本稿では、視覚領域における影響力のある大規模モデルと、これらのモデルに使用される一連のプロンプトエンジニアリング手法を提案する。
論文 参考訳(メタデータ) (2023-07-03T08:48:49Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
我々は,AIによる材料設計の進歩とそのエネルギー材料への応用についてレビューする。
文献における手法を,少数のデータから学習する能力の観点から評価する。
本稿では,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の今後の研究方向性について提案する。
論文 参考訳(メタデータ) (2022-11-15T14:41:11Z) - Artificial Intelligence in Material Engineering: A review on
applications of AI in Material Engineering [0.0]
高性能コンピューティングにより、重要なパラメータでディープラーニング(DL)モデルをテストできるようになった。
GAN(Generative Adversarial Network)は、無機材料の化学組成の生成を促進する。
既存の分析機器からの結果を分析するためのAIの利用についても論じる。
論文 参考訳(メタデータ) (2022-09-15T04:21:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。