Direct Distributional Optimization for Provable Alignment of Diffusion Models
- URL: http://arxiv.org/abs/2502.02954v1
- Date: Wed, 05 Feb 2025 07:35:15 GMT
- Title: Direct Distributional Optimization for Provable Alignment of Diffusion Models
- Authors: Ryotaro Kawata, Kazusato Oko, Atsushi Nitanda, Taiji Suzuki,
- Abstract summary: We introduce a novel alignment method for diffusion models from distribution optimization perspectives.
We first formulate the problem as a generic regularized loss minimization over probability distributions.
We enable sampling from the learned distribution by approximating its score function via Doob's $h$-transform technique.
- Score: 39.048284342436666
- License:
- Abstract: We introduce a novel alignment method for diffusion models from distribution optimization perspectives while providing rigorous convergence guarantees. We first formulate the problem as a generic regularized loss minimization over probability distributions and directly optimize the distribution using the Dual Averaging method. Next, we enable sampling from the learned distribution by approximating its score function via Doob's $h$-transform technique. The proposed framework is supported by rigorous convergence guarantees and an end-to-end bound on the sampling error, which imply that when the original distribution's score is known accurately, the complexity of sampling from shifted distributions is independent of isoperimetric conditions. This framework is broadly applicable to general distribution optimization problems, including alignment tasks in Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), and Kahneman-Tversky Optimization (KTO). We empirically validate its performance on synthetic and image datasets using the DPO objective.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Implicit Diffusion: Efficient Optimization through Stochastic Sampling [46.049117719591635]
We present a new algorithm to optimize distributions defined implicitly by parameterized diffusions.
We introduce a general framework for first-order optimization of these processes, that performs jointly.
We apply it to training energy-based models and finetuning denoising diffusions.
arXiv Detail & Related papers (2024-02-08T08:00:11Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Distributed and Stochastic Optimization Methods with Gradient
Compression and Local Steps [0.0]
We propose theoretical frameworks for the analysis and distributed methods with error compensation and local updates.
We develop more than 20 new optimization methods, including the first linearly converging Error-pensated and first distributed Local-SGD methods.
arXiv Detail & Related papers (2021-12-20T16:12:54Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Distributionally Robust Federated Averaging [19.875176871167966]
We present communication efficient distributed algorithms for robust learning periodic averaging with adaptive sampling.
We give corroborating experimental evidence for our theoretical results in federated learning settings.
arXiv Detail & Related papers (2021-02-25T03:32:09Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.