論文の概要: A Unified Framework for Semi-Supervised Image Segmentation and Registration
- arxiv url: http://arxiv.org/abs/2502.03229v1
- Date: Wed, 05 Feb 2025 14:45:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:27:23.369121
- Title: A Unified Framework for Semi-Supervised Image Segmentation and Registration
- Title(参考訳): 半スーパービジョンによる画像分割と登録のための統一フレームワーク
- Authors: Ruizhe Li, Grazziela Figueredo, Dorothee Auer, Rob Dineen, Paul Morgan, Xin Chen,
- Abstract要約: 画像登録モデルを組み込んだ新しい手法を導入し,注釈のないデータに対して擬似ラベルを生成する。
提案手法は2次元脳データセットを用いて評価され, 注釈付きデータのうち1%しか使用せず, 優れた性能を示した。
- 参考スコア(独自算出の注目度): 4.220987375928411
- License:
- Abstract: Semi-supervised learning, which leverages both annotated and unannotated data, is an efficient approach for medical image segmentation, where obtaining annotations for the whole dataset is time-consuming and costly. Traditional semi-supervised methods primarily focus on extracting features and learning data distributions from unannotated data to enhance model training. In this paper, we introduce a novel approach incorporating an image registration model to generate pseudo-labels for the unannotated data, producing more geometrically correct pseudo-labels to improve the model training. Our method was evaluated on a 2D brain data set, showing excellent performance even using only 1\% of the annotated data. The results show that our approach outperforms conventional semi-supervised segmentation methods (e.g. teacher-student model), particularly in a low percentage of annotation scenario. GitHub: https://github.com/ruizhe-l/UniSegReg.
- Abstract(参考訳): 注釈付きデータと注釈なしデータの両方を活用する半教師付き学習は、医用画像セグメンテーションの効率的なアプローチであり、データセット全体のアノテーションを取得するのに時間と費用がかかる。
従来の半教師付き手法は、主にモデルトレーニングを強化するために、注釈のないデータから特徴の抽出とデータ分布の学習に重点を置いている。
本稿では,画像登録モデルを組み込んだ新しい手法を導入し,無注釈データに対して擬似ラベルを生成することにより,より幾何学的に正しい擬似ラベルを生成し,モデルトレーニングを改善する。
提案手法は2次元脳データセットを用いて評価され, 注釈付きデータのうち1倍の精度で優れた性能を示した。
その結果,本手法は従来の半教師付きセグメンテーション手法(例えば教師-学生モデル)よりも優れており,特にアノテーションシナリオの低い割合で性能が向上していることがわかった。
GitHub: https://github.com/ruizhe-l/UniSegReg.com
関連論文リスト
- Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - Urban Scene Semantic Segmentation with Low-Cost Coarse Annotation [107.72926721837726]
粗いアノテーションは、セマンティックセグメンテーションモデルをトレーニングするための、低コストで非常に効果的な代替手段である。
粗い注釈付きデータの未ラベル領域の擬似ラベルを生成する粗大な自己学習フレームワークを提案する。
提案手法は,アノテーションの予算のごく一部で完全に注釈付けされたデータに匹敵する性能が得られるため,大幅な性能向上とアノテーションのコストトレードオフを実現する。
論文 参考訳(メタデータ) (2022-12-15T15:43:42Z) - Active Self-Training for Weakly Supervised 3D Scene Semantic
Segmentation [17.27850877649498]
本稿では,自己学習と能動的学習を組み合わせた3次元シーンの弱教師付きセグメンテーション手法を提案する。
提案手法は,従来の作業やベースラインよりもシーンセグメンテーションを改善する効果的な手法であることを示す。
論文 参考訳(メタデータ) (2022-09-15T06:00:25Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for
Annotation-efficient Cardiac Segmentation [65.81546955181781]
本稿では,新しい半教師付きドメイン適応手法,すなわちDual-Teacherを提案する。
学生モデルは、2つの教師モデルによってラベル付けされていない対象データとラベル付けされた情報源データの知識を学習する。
提案手法では, ラベルなしデータとモダリティ間データとを並列に利用でき, 性能が向上することを示した。
論文 参考訳(メタデータ) (2020-07-13T10:00:44Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。