論文の概要: STEM: Spatial-Temporal Mapping Tool For Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2502.03287v1
- Date: Wed, 05 Feb 2025 15:44:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:29:05.094082
- Title: STEM: Spatial-Temporal Mapping Tool For Spiking Neural Networks
- Title(参考訳): STEM: ニューラルネットワークをスパイクするための空間時間マッピングツール
- Authors: Sherif Eissa, Sander Stuijk, Floran De Putter, Andrea Nardi-Dei, Federico Corradi, Henk Corporaal,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、バイオインスパイアされた第3世代のニューラルネットワークを約束する。
最近の研究は、ニューラルネットワーク(ANN)と同等の精度で深部SNNモデルを訓練している。
- 参考スコア(独自算出の注目度): 5.144074723846297
- License:
- Abstract: Spiking Neural Networks (SNNs) are promising bio-inspired third-generation neural networks. Recent research has trained deep SNN models with accuracy on par with Artificial Neural Networks (ANNs). Although the event-driven and sparse nature of SNNs show potential for more energy efficient computation than ANNs, SNN neurons have internal states which evolve over time. Keeping track of SNN states can significantly increase data movement and storage requirements, potentially losing its advantages with respect to ANNs. This paper investigates the energy effects of having neuron states, and how it is influenced by the chosen mapping to realistic hardware architectures with advanced memory hierarchies. Therefore, we develop STEMS, a mapping design space exploration tool for SNNs. STEMS models SNN's stateful behavior and explores intra-layer and inter-layer mapping optimizations to minimize data movement, considering both spatial and temporal SNN dimensions. Using STEMS, we show up to 12x reduction in off-chip data movement and 5x reduction in energy (on top of intra-layer optimizations), on two event-based vision SNN benchmarks. Finally, neuron states may not be needed for all SNN layers. By optimizing neuron states for one of our benchmarks, we show 20x reduction in neuron states and 1.4x better performance without accuracy loss.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、バイオインスパイアされた第3世代のニューラルネットワークを約束する。
近年の研究では、ニューラルネットワーク(ANN)と同等の精度で深層SNNモデルを訓練している。
SNNのイベント駆動とスパースの性質は、ANNよりもエネルギー効率のよい計算の可能性を示しているが、SNNニューロンは時間とともに進化する内部状態を持っている。
SNN状態の追跡は、データ移動とストレージ要件を大幅に向上させ、ANNに対する優位性を失う可能性がある。
本稿では,ニューロン状態のエネルギー効果と,高度なメモリ階層を持つ現実的なハードウェアアーキテクチャへのマッピング選択の影響について検討する。
そこで我々は,SNNのための地図設計空間探索ツールであるSTEMSを開発した。
STEMSはSNNのステートフルな振る舞いをモデル化し、空間的および時間的SNN次元の両方を考慮して、データ移動を最小限に抑えるために層内および層間マッピング最適化を探索する。
STEMSを用いて、2つのイベントベースビジョンSNNベンチマークにおいて、オフチップデータ移動の最大12倍、(層内最適化の上位)エネルギーの最大5倍の削減を示す。
最後に、すべてのSNN層にニューロン状態は必要ないかもしれない。
ベンチマークの1つでニューロン状態を最適化することにより、20倍のニューロン状態が減少し、1.4倍の精度で性能が向上した。
関連論文リスト
- Delay Neural Networks (DeNN) for exploiting temporal information in event-based datasets [49.1574468325115]
遅延ニューラルネットワーク(DeNN)は、前方と後方の両方でスパイクの正確な時間的情報を明示的に使用するように設計されている。
特に時間情報が重要であるデータセットでは、優れたパフォーマンスが得られます。
論文 参考訳(メタデータ) (2025-01-10T14:58:15Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
ニューラルインスパイアされたイベント駆動処理でニューラルネットワーク(SNN)をスパイクすることで、非同期データを効率的に処理できる。
スパイク消滅問題を緩和するために,学習可能な神経力学を用いた適応型完全スパイキングフレームワークを提案する。
実験の結果,平均終端誤差(AEE)は最先端のANNと比較して平均13%減少した。
論文 参考訳(メタデータ) (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
スパイキングニューラルネットワーク(SNN)は、エネルギー効率と低レイテンシを含む、魅力的な潜在的な利点を提供する。
高性能SNNにとって有望な領域の1つは、テンプレートマッチングと画像認識である。
本研究では,視覚的位置認識(VPR)タスクのための最初の高性能SNNを紹介する。
論文 参考訳(メタデータ) (2021-09-14T05:40:40Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNNは、視覚オブジェクト追跡ベンチマークであるTB2013, VOT2016, GOT-10kにおいて、短いレイテンシと低い精度の損失を達成する最初のディープSNNトラッカーである。
SiamSNNは、ニューロモルフィックチップTrueNorth上で低エネルギー消費とリアルタイムを実現する。
論文 参考訳(メタデータ) (2020-03-17T08:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。