論文の概要: Benchmarking Time Series Forecasting Models: From Statistical Techniques to Foundation Models in Real-World Applications
- arxiv url: http://arxiv.org/abs/2502.03395v1
- Date: Wed, 05 Feb 2025 17:30:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:28:28.258619
- Title: Benchmarking Time Series Forecasting Models: From Statistical Techniques to Foundation Models in Real-World Applications
- Title(参考訳): ベンチマーク時系列予測モデル:統計的手法から実世界の応用基礎モデルへ
- Authors: Issar Arab, Rodrigo Benitez,
- Abstract要約: 時系列予測は、ホスピタリティ産業における運用インテリジェンスにとって不可欠である。
本研究では,14日間の地平線上での時間売上予測における統計,機械学習(ML),ディープラーニング,基礎モデルの性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Time series forecasting is essential for operational intelligence in the hospitality industry, and particularly challenging in large-scale, distributed systems. This study evaluates the performance of statistical, machine learning (ML), deep learning, and foundation models in forecasting hourly sales over a 14-day horizon using real-world data from a network of thousands of restaurants across Germany. The forecasting solution includes features such as weather conditions, calendar events, and time-of-day patterns. Results demonstrate the strong performance of ML-based meta-models and highlight the emerging potential of foundation models like Chronos and TimesFM, which deliver competitive performance with minimal feature engineering, leveraging only the pre-trained model (zero-shot inference). Additionally, a hybrid PySpark-Pandas approach proves to be a robust solution for achieving horizontal scalability in large-scale deployments.
- Abstract(参考訳): 時系列予測は、ホスピタリティ産業における運用インテリジェンスにとって不可欠であり、特に大規模分散システムでは困難である。
本研究では、ドイツ全土の何千ものレストランのネットワークからの実世界データを用いて、14日間の地平線上での時間売上予測における統計、機械学習(ML)、ディープラーニング、基礎モデルの性能を評価する。
予測ソリューションには、天気条件、カレンダーイベント、日のパターンなどの機能が含まれている。
結果はMLベースのメタモデルの強力なパフォーマンスを示し、ChronosやTimesFMのような基盤モデルの出現する可能性を強調している。
さらに、ハイブリッドPySpark-Pandasアプローチは、大規模デプロイメントにおいて水平スケーラビリティを実現するための堅牢なソリューションであることを証明している。
関連論文リスト
- Sundial: A Family of Highly Capable Time Series Foundation Models [64.6322079384575]
Sundialはネイティブでフレキシブルでスケーラブルな時系列基盤モデルのファミリーです。
本モデルでは,事前分布を指定せずに事前学習を行い,複数の予測予測を生成できる。
TimeFlow Loss を通じてモード崩壊を緩和することにより、TimeBench 上で Sundial モデルのファミリーを事前訓練し、前例のないモデルキャパシティと一般化性能を示す。
論文 参考訳(メタデータ) (2025-02-02T14:52:50Z) - The Tabular Foundation Model TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features [40.19199376033612]
本稿では,TabPFNと単純な特徴工学を組み合わせ,予測性能を高めるための簡単なアプローチであるTabPFN-TSを提案する。
その単純さとわずか1100万のパラメータにもかかわらず、TabPFN-TSは類似サイズのモデルであるChronos-Miniよりも優れており、65倍のパラメータを持つChronos-Largeよりもわずかに優れている。
論文 参考訳(メタデータ) (2025-01-06T11:38:19Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts [25.503695417712997]
Time-MoEは、より大きく、より有能な基礎モデルを予測するために設計された、スケーラブルで統一されたアーキテクチャである。
Time-MoEは、予測毎にネットワークのサブセットだけを活性化することで、計算効率を向上させる。
時系列基礎モデルを24億のパラメータに拡張し,予測精度を大幅に向上させた。
論文 参考訳(メタデータ) (2024-09-24T12:42:18Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Evaluation of Time-Series Forecasting Models for Chickenpox Cases
Estimation in Hungary [0.0]
我々は時系列予測技術を用いて,ニワトリの今後の発生をモデル化し,予測する。
ハンガリーが収集したデータセット上で,複数のモデルとデータ前処理技術を実装し,シミュレーションする。
論文 参考訳(メタデータ) (2022-09-28T14:27:07Z) - An Accurate and Fully-Automated Ensemble Model for Weekly Time Series
Forecasting [9.617563440471928]
本稿では,最先端の予測技術を活用した予測手法を提案する。
異なるメタ学習アーキテクチャ、アルゴリズム、ベースモデルプールについて検討する。
提案手法は、一連のベンチマークと最先端の週次予測モデルより一貫して優れている。
論文 参考訳(メタデータ) (2020-10-16T04:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。