The Performance Of The Unadjusted Langevin Algorithm Without Smoothness Assumptions
- URL: http://arxiv.org/abs/2502.03458v1
- Date: Wed, 05 Feb 2025 18:55:54 GMT
- Title: The Performance Of The Unadjusted Langevin Algorithm Without Smoothness Assumptions
- Authors: Tim Johnston, Iosif Lytras, Nikolaos Makras, Sotirios Sabanis,
- Abstract summary: We propose a Langevin-based algorithm that does not rely on popular but computationally challenging techniques.
We derive non-asymptotic guarantees for the convergence of the algorithm to the target distribution.
Non-asymptotic distances are also provided for the performance of the algorithm as an bounds.
- Score: 0.0
- License:
- Abstract: In this article, we study the problem of sampling from distributions whose densities are not necessarily smooth nor log-concave. We propose a simple Langevin-based algorithm that does not rely on popular but computationally challenging techniques, such as the Moreau Yosida envelope or Gaussian smoothing. We derive non-asymptotic guarantees for the convergence of the algorithm to the target distribution in Wasserstein distances. Non asymptotic bounds are also provided for the performance of the algorithm as an optimizer, specifically for the solution of associated excess risk optimization problems.
Related papers
- Random Scaling and Momentum for Non-smooth Non-convex Optimization [38.443430569753026]
Training neural networks requires a loss function that may be highly irregular, and in particular neither convex nor smooth.
Popular training algorithms are based on gradient descent with momentum (SGDM), for which analysis applies only if the loss is either convex or smooth.
arXiv Detail & Related papers (2024-05-16T00:52:03Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
The expected improvement (EI) algorithm is one of the most popular strategies for optimization under uncertainty.
We propose a variant of EI with a standard incumbent defined via the GP predictive mean.
We show that our algorithm converges, and achieves a cumulative regret bound of $mathcal O(gamma_TsqrtT)$.
arXiv Detail & Related papers (2022-03-15T13:17:53Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
Kernelized bandit algorithms have shown strong empirical and theoretical performance for this problem.
We introduce a emphmisspecified kernelized bandit setting where the unknown function can be $epsilon$--uniformly approximated by a function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS)
We show that our algorithm achieves optimal dependence on $epsilon$ with no prior knowledge of misspecification.
arXiv Detail & Related papers (2021-11-09T09:00:02Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - The Strength of Nesterov's Extrapolation in the Individual Convergence
of Nonsmooth Optimization [0.0]
We prove that Nesterov's extrapolation has the strength to make the individual convergence of gradient descent methods optimal for nonsmooth problems.
We give an extension of the derived algorithms to solve regularized learning tasks with nonsmooth losses in settings.
Our method is applicable as an efficient tool for solving large-scale $l$1-regularized hinge-loss learning problems.
arXiv Detail & Related papers (2020-06-08T03:35:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.