A Multi-Task Learning Approach to Linear Multivariate Forecasting
- URL: http://arxiv.org/abs/2502.03571v1
- Date: Wed, 05 Feb 2025 19:34:23 GMT
- Title: A Multi-Task Learning Approach to Linear Multivariate Forecasting
- Authors: Liran Nochumsohn, Hedi Zisling, Omri Azencot,
- Abstract summary: Recent state-of-the-art works ignore the inter-relations between divisons, using their model on each divison independently.
We propose to view multivariate forecasting as a multi-task learning problem, facilitating the analysis of forecasting.
We evaluate our approach on challenging benchmarks in comparison to strong baselines, and we show it obtains on-par or better results.
- Score: 4.369550829556578
- License:
- Abstract: Accurate forecasting of multivariate time series data is important in many engineering and scientific applications. Recent state-of-the-art works ignore the inter-relations between variates, using their model on each variate independently. This raises several research questions related to proper modeling of multivariate data. In this work, we propose to view multivariate forecasting as a multi-task learning problem, facilitating the analysis of forecasting by considering the angle between task gradients and their balance. To do so, we analyze linear models to characterize the behavior of tasks. Our analysis suggests that tasks can be defined by grouping similar variates together, which we achieve via a simple clustering that depends on correlation-based similarities. Moreover, to balance tasks, we scale gradients with respect to their prediction error. Then, each task is solved with a linear model within our MTLinear framework. We evaluate our approach on challenging benchmarks in comparison to strong baselines, and we show it obtains on-par or better results on multivariate forecasting problems. The implementation is available at: https://github.com/azencot-group/MTLinear
Related papers
- Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting [16.640336442849282]
We formulate a multi-task optimization problem as a regularization technique to enable single-task models to leverage multi-task learning information.
We derive a closed-form solution for multi-task optimization in the context of linear models.
arXiv Detail & Related papers (2024-06-14T17:59:25Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
We propose a flexible multi-task learning framework utilizing summary statistics from various sources.
We also present an adaptive parameter selection approach based on a variant of Lepski's method.
This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction.
arXiv Detail & Related papers (2023-07-05T15:55:23Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Mixture of basis for interpretable continual learning with distribution
shifts [1.6114012813668934]
Continual learning in environments with shifting data distributions is a challenging problem with several real-world applications.
We propose a novel approach called mixture of Basismodels (MoB) for addressing this problem setting.
arXiv Detail & Related papers (2022-01-05T22:53:15Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
We propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps.
The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast.
arXiv Detail & Related papers (2021-09-14T07:38:35Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - A Markov Decision Process Approach to Active Meta Learning [24.50189361694407]
In supervised learning, we fit a single statistical model to a given data set, assuming that the data is associated with a singular task.
In meta-learning, the data is associated with numerous tasks, and we seek a model that may perform well on all tasks simultaneously.
arXiv Detail & Related papers (2020-09-10T15:45:34Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.