A Novel Zero-Touch, Zero-Trust, AI/ML Enablement Framework for IoT Network Security
- URL: http://arxiv.org/abs/2502.03614v1
- Date: Wed, 05 Feb 2025 21:03:07 GMT
- Title: A Novel Zero-Touch, Zero-Trust, AI/ML Enablement Framework for IoT Network Security
- Authors: Sushil Shakya, Robert Abbas, Sasa Maric,
- Abstract summary: This paper presents a novel framework based on the integration of Zero Trust, Zero Touch, and AI/ML powered for the detection, mitigation, and prevention of DDoS attacks in modern IoT ecosystems.
The focus will be on the new integrated framework by establishing zero trust for all IoT traffic, fixed and mobile 5G/6G IoT network traffic, and data security.
- Score: 0.0
- License:
- Abstract: The IoT facilitates a connected, intelligent, and sustainable society; therefore, it is imperative to protect the IoT ecosystem. The IoT-based 5G and 6G will leverage the use of machine learning and artificial intelligence (ML/AI) more to pave the way for autonomous and collaborative secure IoT networks. Zero-touch, zero-trust IoT security with AI and machine learning (ML) enablement frameworks offers a powerful approach to securing the expanding landscape of Internet of Things (IoT) devices. This paper presents a novel framework based on the integration of Zero Trust, Zero Touch, and AI/ML powered for the detection, mitigation, and prevention of DDoS attacks in modern IoT ecosystems. The focus will be on the new integrated framework by establishing zero trust for all IoT traffic, fixed and mobile 5G/6G IoT network traffic, and data security (quarantine-zero touch and dynamic policy enforcement). We perform a comparative analysis of five machine learning models, namely, XGBoost, Random Forest, K-Nearest Neighbors, Stochastic Gradient Descent, and Native Bayes, by comparing these models based on accuracy, precision, recall, F1-score, and ROC-AUC. Results show that the best performance in detecting and mitigating different DDoS vectors comes from the ensemble-based approaches.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Zero-X: A Blockchain-Enabled Open-Set Federated Learning Framework for Zero-Day Attack Detection in IoV [5.176552248390308]
Internet of Vehicles (IoV) is a crucial technology for Intelligent Transportation Systems (ITS) that integrates vehicles with the Internet and other entities.
As connectivity expands, cybersecurity threats have become a significant concern.
We propose Zero-X, an innovative security framework that effectively detects both 0-day and N-day attacks.
arXiv Detail & Related papers (2024-07-03T10:06:15Z) - zk-IoT: Securing the Internet of Things with Zero-Knowledge Proofs on Blockchain Platforms [0.0]
This paper introduces the zk-IoT framework, a novel approach to enhancing the security of Internet of Things (IoT) ecosystems.
Our framework ensures the integrity of firmware execution and data processing in potentially compromised IoT devices.
arXiv Detail & Related papers (2024-02-13T09:34:23Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
Edge artificial intelligence (AI) has been proposed to provide high-performance computation of a conventional cloud down to the network edge.
Recently, convergence of wireless sensing, computation and communication (SC$2$) for specific edge AI tasks, has aroused paradigm shift.
It is paramount importance to advance fully integrated sensing, computation and communication (I SCC) to achieve ultra-reliable and low-latency edge intelligence acquisition.
arXiv Detail & Related papers (2023-06-11T06:40:51Z) - Harris Hawks Feature Selection in Distributed Machine Learning for
Secure IoT Environments [8.690178186919635]
Internet of Things (IoT) applications can collect and transfer sensitive data.
It is necessary to develop new methods to detect hacked IoT devices.
This paper proposes a Feature Selection (FS) model based on Harris Hawks Optimization (HHO) and Random Weight Network (RWN) to detect IoT botnet attacks.
arXiv Detail & Related papers (2023-02-20T09:38:12Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
We propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection.
The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data.
The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
arXiv Detail & Related papers (2022-04-08T19:06:16Z) - IoT Security: Botnet detection in IoT using Machine learning [0.0]
This research work is to propose an innovative model using machine learning algorithm to detect and mitigate botnet-based distributed denial of service (DDoS) attack in IoT network.
Our proposed model tackles the security issue concerning the threats from bots.
arXiv Detail & Related papers (2021-04-06T01:47:50Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.