Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation
- URL: http://arxiv.org/abs/2502.03643v2
- Date: Tue, 25 Mar 2025 13:13:00 GMT
- Title: Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation
- Authors: Nirola Kobanov, Edmund Weatherstone, Zachary Vanderpoel, Orlando Wetherby,
- Abstract summary: A novel modulation gradient approach is introduced to adjust parameter updates dynamically in response to contextual relevance.<n>The proposed method enhances the stability of model-generated narratives without imposing significant computational overhead.
- Score: 0.19791587637442667
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Maintaining semantic consistency over extended text sequences remains a fundamental challenge in long-form text generation, where conventional training methodologies often struggle to prevent contextual drift and coherence degradation. A novel gradient modulation approach is introduced, designed to adjust parameter updates dynamically in response to contextual relevance, ensuring that generated text remains aligned with prior discourse. By integrating a modulation function that selectively amplifies or attenuates gradients based on learned contextual dependencies, the proposed method enhances the stability of model-generated narratives without imposing significant computational overhead. Comparative evaluations against baseline models reveal improvements in coherence, contextual retention, and long-range dependency tracking, demonstrating the effectiveness of modifying the learning process at the gradient level. The results indicate that sentence structure variability and lexical diversity benefit from this approach, mitigating repetitive phrasing and improving adaptability across diverse linguistic contexts. Statistical validation of coherence metrics further substantiates the observed enhancements, with a significant reduction in inconsistencies emerging as a direct consequence of the modulation mechanism. Computational efficiency assessments confirm that the framework achieves these gains without requiring substantial modifications to the underlying architecture, ensuring compatibility with existing optimization workflows.
Related papers
- Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.
We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training [66.48331530995786]
We propose syMmetry-ENhanceD (MEND) Data Augmentation, a data-centric approach that improves the model's ability to extract useful information from context.
Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage.
Experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations.
arXiv Detail & Related papers (2025-02-25T03:03:35Z) - FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching [51.32059240975148]
FELLE is an autoregressive model that integrates language modeling with token-wise flow matching.
For each continuous-valued token, FELLE modifies the general prior distribution in flow matching by incorporating information from the previous step.
FELLE generates continuous-valued tokens hierarchically, conditioned on the language model's output.
arXiv Detail & Related papers (2025-02-16T13:54:32Z) - Exploring Contextual Flux in Large Language Models: A Novel Approach to Self-Modulating Semantic Networks [0.0]
Self-modulating mechanisms introduce dynamic adaptation capabilities within language models.
contextual realignment strategies influence token embedding trajectories across extended sequences.
Self-regulation enhances text generation consistency while preserving generative flexibility.
Findings suggest that while adaptive embedding updates improve certain aspects of coherence, their impact remains contingent on model capacity and input complexity.
arXiv Detail & Related papers (2025-02-16T01:08:19Z) - Latent Convergence Modulation in Large Language Models: A Novel Approach to Iterative Contextual Realignment [0.0]
A structured modulation mechanism was introduced to regulate hidden state transitions.
Lattice adjustments contributed to reductions in perplexity fluctuations, entropy variance, and lexical instability.
arXiv Detail & Related papers (2025-02-10T09:46:33Z) - Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces [0.0]
A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments.
The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation.
structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions.
arXiv Detail & Related papers (2025-02-06T22:57:40Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models.<n>A hierarchical alignment method was introduced to token embeddings without altering core model weights.<n> Experimental evaluations demonstrated improvements in rare token retrieval, adversarial, and long-range dependency tracking.
arXiv Detail & Related papers (2025-02-06T04:01:27Z) - Gradient-Regularized Latent Space Modulation in Large Language Models for Structured Contextual Synthesis [0.0]
This paper introduces a novel paradigm for guiding text generation through the application of structured constraints within the latent space.<n>The integration of gradient-based regularizations mitigates abrupt variations in latent representations.<n>The framework substantially reduces structural inconsistencies while preserving the generative flexibility inherent in neural models.
arXiv Detail & Related papers (2025-02-04T03:43:52Z) - Contextual Morphogenesis in Large Language Models: A Novel Approach to Self-Organizing Token Representations [0.0]
contextual morphogenesis establishes a self-organizing mechanism that restructures token boundaries based on learned contextual dependencies.<n> Empirical evaluations demonstrate that dynamically adjusted tokenization contributes to reductions in perplexity while maintaining representational stability.<n> Comparative assessments across different linguistic corpora suggest that adaptive tokenization preserves interpretability while improving alignment with contextual cues.<n>The effectiveness of contextual morphogenesis in refining structural stability and predictive performance highlights its viability as an alternative to traditional tokenization methods.
arXiv Detail & Related papers (2025-02-01T03:50:46Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of language model inference.<n>The mathematical formulation of Structural Embedding Projection (SEP) enables embedding spaces to capture structured contextual relationships.<n>The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage.
arXiv Detail & Related papers (2025-01-31T00:46:21Z) - Contextually Entangled Gradient Mapping for Optimized LLM Comprehension [0.0]
Entually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization.<n>It treats gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities.<n>The proposed methodology bridges critical gaps in existing optimization strategies.
arXiv Detail & Related papers (2025-01-28T11:50:35Z) - Sequential Visual and Semantic Consistency for Semi-supervised Text
Recognition [56.968108142307976]
Scene text recognition (STR) is a challenging task that requires large-scale annotated data for training.
Most existing STR methods resort to synthetic data, which may introduce domain discrepancy and degrade the performance of STR models.
This paper proposes a novel semi-supervised learning method for STR that incorporates word-level consistency regularization from both visual and semantic aspects.
arXiv Detail & Related papers (2024-02-24T13:00:54Z) - Enhancing Systematic Decompositional Natural Language Inference Using Informal Logic [51.967603572656266]
We introduce a consistent and theoretically grounded approach to annotating decompositional entailment.
We find that our new dataset, RDTE, has a substantially higher internal consistency (+9%) than prior decompositional entailment datasets.
We also find that training an RDTE-oriented entailment classifier via knowledge distillation and employing it in an entailment tree reasoning engine significantly improves both accuracy and proof quality.
arXiv Detail & Related papers (2024-02-22T18:55:17Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Improving Adversarial Text Generation by Modeling the Distant Future [155.83051741029732]
We consider a text planning scheme and present a model-based imitation-learning approach to alleviate the aforementioned issues.
We propose a novel guider network to focus on the generative process over a longer horizon, which can assist next-word prediction and provide intermediate rewards for generator optimization.
arXiv Detail & Related papers (2020-05-04T05:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.