Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models
- URL: http://arxiv.org/abs/2502.03766v1
- Date: Thu, 06 Feb 2025 04:01:27 GMT
- Title: Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models
- Authors: Meiquan Dong, Haoran Liu, Yan Huang, Zixuan Feng, Jianhong Tang, Ruoxi Wang,
- Abstract summary: The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models.<n>A hierarchical alignment method was introduced to token embeddings without altering core model weights.<n> Experimental evaluations demonstrated improvements in rare token retrieval, adversarial, and long-range dependency tracking.
- Score: 7.798982346197703
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models, yet conventional approaches to embedding refinement often rely on parameter modifications that introduce additional computational overhead. A hierarchical alignment method was introduced to restructure token embeddings without altering core model weights, ensuring that representational distributions maintained coherence across different linguistic contexts. Experimental evaluations demonstrated improvements in rare token retrieval, adversarial robustness, and long-range dependency tracking, highlighting the advantages of hierarchical structuring in mitigating inconsistencies in latent space organization. The comparative analysis against conventional fine-tuning and embedding perturbation methods revealed that hierarchical restructuring maintained computational efficiency while achieving measurable gains in representation quality. Structural refinements introduced through the alignment process resulted in improved contextual stability across varied linguistic tasks, reducing inconsistencies in token proximity relationships and enhancing interpretability in language generation. A detailed computational assessment confirmed that the realignment process introduced minimal inference overhead, ensuring that representational improvements did not compromise model efficiency. The findings reinforced the broader significance of structured representation learning, illustrating that hierarchical embedding modifications could serve as an effective strategy for refining latent space distributions while preserving pre-learned semantic associations.
Related papers
- Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.
We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.
Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - Statistical Coherence Alignment for Large Language Model Representation Learning Through Tensor Field Convergence [0.0]
Representation learning plays a central role in structuring internal embeddings to capture statistical properties of language.
Coherence alignment is introduced as a method to enforce structured token representations through tensor field convergence.
Empirical evaluations demonstrate that applying coherence constraints improves perplexity, enhances classification accuracy, and refines rare word embeddings.
arXiv Detail & Related papers (2025-02-13T23:24:25Z) - Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding [0.0]
Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers.
This paper introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings.
Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation.
arXiv Detail & Related papers (2025-02-13T04:01:54Z) - Lexical Manifold Reconfiguration in Large Language Models: A Novel Architectural Approach for Contextual Modulation [0.0]
A structured approach was developed for dynamically reconfiguring token embeddings through continuous geometric transformations.
A manifold-based transformation mechanism was integrated to regulate lexical positioning, allowing embeddings to undergo controlled shifts.
Empirical evaluations demonstrated that embedding reconfiguration contributed to reductions in perplexity, improved lexical coherence, and enhanced sentence-level continuity.
arXiv Detail & Related papers (2025-02-12T22:11:07Z) - Contextual Subspace Manifold Projection for Structural Refinement of Large Language Model Representations [0.0]
Internal representations within deep neural architectures encode high-dimensional abstractions of linguistic structures.
This paper introduces a structured refinement technique that selectively reconfigures token embeddings through controlled subspace constraints.
Empirical evaluations demonstrated that the structured intervention reduced anisotropy, leading to improved representation compactness.
arXiv Detail & Related papers (2025-02-12T00:00:37Z) - Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation [0.0]
The integration of structured hierarchical embeddings into transformer-based architectures introduces a refined approach to lexical representation.
A projection mechanism that maps tokens onto a structured manifold provides improved lexical alignment.
The refined hierarchical organization of embeddings provides greater interpretability in lexical modeling.
arXiv Detail & Related papers (2025-02-08T00:49:32Z) - Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation [0.19791587637442667]
A novel modulation gradient approach is introduced to adjust parameter updates dynamically in response to contextual relevance.<n>The proposed method enhances the stability of model-generated narratives without imposing significant computational overhead.
arXiv Detail & Related papers (2025-02-05T22:13:06Z) - Gradient-Regularized Latent Space Modulation in Large Language Models for Structured Contextual Synthesis [0.0]
This paper introduces a novel paradigm for guiding text generation through the application of structured constraints within the latent space.<n>The integration of gradient-based regularizations mitigates abrupt variations in latent representations.<n>The framework substantially reduces structural inconsistencies while preserving the generative flexibility inherent in neural models.
arXiv Detail & Related papers (2025-02-04T03:43:52Z) - Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement [0.0]
Latent Lexical Projection (LLP) is introduced to refine lexical representations through a structured transformation into a latent space.<n>LLP integrates an optimized projection mechanism within an existing language model architecture.<n> Evaluations indicate a reduction in perplexity and an increase in BLEU scores, suggesting improvements in predictive accuracy and fluency.
arXiv Detail & Related papers (2025-02-03T23:18:53Z) - Contextual Morphogenesis in Large Language Models: A Novel Approach to Self-Organizing Token Representations [0.0]
contextual morphogenesis establishes a self-organizing mechanism that restructures token boundaries based on learned contextual dependencies.<n> Empirical evaluations demonstrate that dynamically adjusted tokenization contributes to reductions in perplexity while maintaining representational stability.<n> Comparative assessments across different linguistic corpora suggest that adaptive tokenization preserves interpretability while improving alignment with contextual cues.<n>The effectiveness of contextual morphogenesis in refining structural stability and predictive performance highlights its viability as an alternative to traditional tokenization methods.
arXiv Detail & Related papers (2025-02-01T03:50:46Z) - Contextually Structured Token Dependency Encoding for Large Language Models [0.0]
Self-attention mechanisms capture dynamic contextual dependencies, but their reliance on learned weight distributions limits the preservation of long-range hierarchical structures in generated sequences.<n>Dependency-aware token encoding introduces a structured approach to embedding, ensuring relational constraints are embedded within token representations.<n> Empirical evaluations indicate reductions in perplexity across diverse linguistic benchmarks, suggesting improvements in contextual coherence and predictive consistency in autoregressive text generation.
arXiv Detail & Related papers (2025-01-30T08:51:48Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - Enhancing Systematic Decompositional Natural Language Inference Using Informal Logic [51.967603572656266]
We introduce a consistent and theoretically grounded approach to annotating decompositional entailment.
We find that our new dataset, RDTE, has a substantially higher internal consistency (+9%) than prior decompositional entailment datasets.
We also find that training an RDTE-oriented entailment classifier via knowledge distillation and employing it in an entailment tree reasoning engine significantly improves both accuracy and proof quality.
arXiv Detail & Related papers (2024-02-22T18:55:17Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.