Variational Control for Guidance in Diffusion Models
- URL: http://arxiv.org/abs/2502.03686v2
- Date: Fri, 23 May 2025 22:41:09 GMT
- Title: Variational Control for Guidance in Diffusion Models
- Authors: Kushagra Pandey, Farrin Marouf Sofian, Felix Draxler, Theofanis Karaletsos, Stephan Mandt,
- Abstract summary: We introduce Diffusion Trajectory Matching (DTM) that enables guiding pretrained diffusion trajectories to satisfy a terminal cost.<n>DTM unifies a broad class of guidance methods and enables novel instantiations.<n>We introduce a new method within this framework that achieves state-of-the-art results on several linear, non-linear, and blind inverse problems.
- Score: 19.51536406897083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models exhibit excellent sample quality, but existing guidance methods often require additional model training or are limited to specific tasks. We revisit guidance in diffusion models from the perspective of variational inference and control, introducing Diffusion Trajectory Matching (DTM) that enables guiding pretrained diffusion trajectories to satisfy a terminal cost. DTM unifies a broad class of guidance methods and enables novel instantiations. We introduce a new method within this framework that achieves state-of-the-art results on several linear, non-linear, and blind inverse problems without requiring additional model training or specificity to pixel or latent space diffusion models. Our code will be available at https://github.com/czi-ai/oc-guidance
Related papers
- TITAN-Guide: Taming Inference-Time AligNment for Guided Text-to-Video Diffusion Models [21.435477418640403]
Training-free conditioning via guidance with off-the-shelf models is a favorable alternative to avoid further fine-tuning on the base model.<n>We propose Taming Inference Time Alignment for Guided Text-to-Video Diffusion Model, so-called TITAN-Guide, which overcomes memory space issues.<n>Our proposed approach not only minimizes memory requirements but also significantly enhances T2V performance across a range of diffusion guidance benchmarks.
arXiv Detail & Related papers (2025-08-01T03:26:18Z) - Domain Guidance: A Simple Transfer Approach for a Pre-trained Diffusion Model [62.11981915549919]
Domain Guidance is a transfer approach that leverages pre-trained knowledge to guide the sampling process toward the target domain.
We demonstrate its substantial effectiveness across various transfer benchmarks, achieving over a 19.6% improvement in FID and a 23.4% improvement in FD$_textDINOv2$ compared to standard fine-tuning.
arXiv Detail & Related papers (2025-04-02T09:07:55Z) - Adding Conditional Control to Diffusion Models with Reinforcement Learning [59.295203871547336]
Diffusion models are powerful generative models that allow for precise control over the characteristics of the generated samples.
This work presents a novel method based on reinforcement learning (RL) to add additional controls, leveraging an offline dataset.
arXiv Detail & Related papers (2024-06-17T22:00:26Z) - Dreamguider: Improved Training free Diffusion-based Conditional Generation [31.68823843900196]
Dreamguider is a method that enables inference-time guidance without compute-heavy backpropagation through the diffusion network.
We present experiments using Dreamguider on multiple tasks across multiple datasets and models to show the effectiveness of the proposed modules.
arXiv Detail & Related papers (2024-06-04T17:59:32Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
We propose a novel two-stage divide-and-conquer training strategy termed TDC Training.
It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models.
While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Manifold Preserving Guided Diffusion [121.97907811212123]
Conditional image generation still faces challenges of cost, generalizability, and the need for task-specific training.
We propose Manifold Preserving Guided Diffusion (MPGD), a training-free conditional generation framework.
arXiv Detail & Related papers (2023-11-28T02:08:06Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
arXiv Detail & Related papers (2023-10-15T18:44:30Z) - Training-free Linear Image Inverses via Flows [17.291903204982326]
We propose a training-free method for solving linear inverse problems by using pretrained flow models.
Our approach requires no problem-specific tuning across an extensive suite of noisy linear inverse problems on high-dimensional datasets.
arXiv Detail & Related papers (2023-09-25T22:13:16Z) - On-the-Fly Guidance Training for Medical Image Registration [14.309599960641242]
This study introduces a novel On-the-Fly Guidance (OFG) training framework for enhancing existing learning-based image registration models.
Our method proposes a supervised fashion for training registration models, without the need for any labeled data.
Our method is tested across several benchmark datasets and leading models, it significantly enhanced performance.
arXiv Detail & Related papers (2023-08-29T11:12:53Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.