Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding
- URL: http://arxiv.org/abs/2502.08947v1
- Date: Thu, 13 Feb 2025 04:01:54 GMT
- Title: Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding
- Authors: Fenella Harcourt, Naderdel Piero, Gilbert Sutherland, Daphne Holloway, Harriet Bracknell, Julian Ormsby,
- Abstract summary: Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers.<n>This paper introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings.<n> Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers. Hierarchical latent space folding introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings, refining representational compactness while preserving essential contextual distinctions. The proposed approach incorporates dynamic folding operations that iteratively adjust token embeddings through structured transformations, influencing both short-range and long-range dependencies in sequential processing tasks. Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation. The structured redistribution of attention head utilization leads to more efficient allocation of computational resources, particularly in deeper layers, where hierarchical refinements improve contextual abstraction. Comparative analysis of activation sparsity patterns suggests that hierarchical adjustments selectively reinforce critical pathways while reducing computational overhead in non-essential regions of the model. Statistical assessments of token reordering frequencies reveal that hierarchical modifications introduce subtle shifts in sequential dependencies, improving contextual alignment while maintaining syntactic correctness. Computational trade-offs associated with hierarchical folding introduce marginal increases in training time per epoch, yet empirical findings indicate that inference efficiency benefits from the structured representation adjustments. The results highlight the impact of hierarchical latent space folding on optimizing model performance through improved representation structuring and computational efficiency.
Related papers
- Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.
We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.
Our contribution is to provide the first general estimation technique for transportability problems.
We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.
Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - Contextual Subspace Manifold Projection for Structural Refinement of Large Language Model Representations [0.0]
Internal representations within deep neural architectures encode high-dimensional abstractions of linguistic structures.<n>This paper introduces a structured refinement technique that selectively reconfigures token embeddings through controlled subspace constraints.<n> Empirical evaluations demonstrated that the structured intervention reduced anisotropy, leading to improved representation compactness.
arXiv Detail & Related papers (2025-02-12T00:00:37Z) - Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces [0.0]
A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments.<n>The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation.<n> structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions.
arXiv Detail & Related papers (2025-02-06T22:57:40Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models.<n>A hierarchical alignment method was introduced to token embeddings without altering core model weights.<n> Experimental evaluations demonstrated improvements in rare token retrieval, adversarial, and long-range dependency tracking.
arXiv Detail & Related papers (2025-02-06T04:01:27Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of language model inference.<n>The mathematical formulation of Structural Embedding Projection (SEP) enables embedding spaces to capture structured contextual relationships.<n>The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage.
arXiv Detail & Related papers (2025-01-31T00:46:21Z) - Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis [0.0]
The organization of latent knowledge within large-scale models poses unique challenges when addressing overlapping representations and optimizing contextual accuracy.<n>A framework was proposed to restructure these redundancies through advanced clustering techniques and dynamic thresholding.<n> Evaluations revealed improved memory efficiency and faster inference times, alongside better alignment in latent knowledge clusters that enhanced interpretability.
arXiv Detail & Related papers (2025-01-23T11:34:04Z) - Structural Entropy Guided Probabilistic Coding [52.01765333755793]
We propose a novel structural entropy-guided probabilistic coding model, named SEPC.<n>We incorporate the relationship between latent variables into the optimization by proposing a structural entropy regularization loss.<n> Experimental results across 12 natural language understanding tasks, including both classification and regression tasks, demonstrate the superior performance of SEPC.
arXiv Detail & Related papers (2024-12-12T00:37:53Z) - Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation [66.40525136929398]
Test-time adaptation (TTA) has attracted attention due to its ability to adapt a pre-trained model to a target domain, without re-accessing the source domain.<n>We propose Matcha, an innovative framework designed for effective and efficient adaptation to structure shifts in graphs.<n>We validate the effectiveness of Matcha on both synthetic and real-world datasets, demonstrating its robustness across various combinations of structure and attribute shifts.
arXiv Detail & Related papers (2024-10-09T15:15:40Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.