Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding
- URL: http://arxiv.org/abs/2502.08947v1
- Date: Thu, 13 Feb 2025 04:01:54 GMT
- Title: Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding
- Authors: Fenella Harcourt, Naderdel Piero, Gilbert Sutherland, Daphne Holloway, Harriet Bracknell, Julian Ormsby,
- Abstract summary: Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers.
This paper introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings.
Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation.
- Score: 0.0
- License:
- Abstract: Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers. Hierarchical latent space folding introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings, refining representational compactness while preserving essential contextual distinctions. The proposed approach incorporates dynamic folding operations that iteratively adjust token embeddings through structured transformations, influencing both short-range and long-range dependencies in sequential processing tasks. Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation. The structured redistribution of attention head utilization leads to more efficient allocation of computational resources, particularly in deeper layers, where hierarchical refinements improve contextual abstraction. Comparative analysis of activation sparsity patterns suggests that hierarchical adjustments selectively reinforce critical pathways while reducing computational overhead in non-essential regions of the model. Statistical assessments of token reordering frequencies reveal that hierarchical modifications introduce subtle shifts in sequential dependencies, improving contextual alignment while maintaining syntactic correctness. Computational trade-offs associated with hierarchical folding introduce marginal increases in training time per epoch, yet empirical findings indicate that inference efficiency benefits from the structured representation adjustments. The results highlight the impact of hierarchical latent space folding on optimizing model performance through improved representation structuring and computational efficiency.
Related papers
- Contextual Subspace Manifold Projection for Structural Refinement of Large Language Model Representations [0.0]
Internal representations within deep neural architectures encode high-dimensional abstractions of linguistic structures.
This paper introduces a structured refinement technique that selectively reconfigures token embeddings through controlled subspace constraints.
Empirical evaluations demonstrated that the structured intervention reduced anisotropy, leading to improved representation compactness.
arXiv Detail & Related papers (2025-02-12T00:00:37Z) - Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces [0.0]
A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments.
The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation.
structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions.
arXiv Detail & Related papers (2025-02-06T22:57:40Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models.
A hierarchical alignment method was introduced to token embeddings without altering core model weights.
Experimental evaluations demonstrated improvements in rare token retrieval, adversarial, and long-range dependency tracking.
arXiv Detail & Related papers (2025-02-06T04:01:27Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of language model inference.
The mathematical formulation of Structural Embedding Projection (SEP) enables embedding spaces to capture structured contextual relationships.
The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage.
arXiv Detail & Related papers (2025-01-31T00:46:21Z) - Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis [0.0]
The organization of latent knowledge within large-scale models poses unique challenges when addressing overlapping representations and optimizing contextual accuracy.
A framework was proposed to restructure these redundancies through advanced clustering techniques and dynamic thresholding.
Evaluations revealed improved memory efficiency and faster inference times, alongside better alignment in latent knowledge clusters that enhanced interpretability.
arXiv Detail & Related papers (2025-01-23T11:34:04Z) - Structural Entropy Guided Probabilistic Coding [52.01765333755793]
We propose a novel structural entropy-guided probabilistic coding model, named SEPC.
We incorporate the relationship between latent variables into the optimization by proposing a structural entropy regularization loss.
Experimental results across 12 natural language understanding tasks, including both classification and regression tasks, demonstrate the superior performance of SEPC.
arXiv Detail & Related papers (2024-12-12T00:37:53Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.