論文の概要: Single-Domain Generalized Object Detection by Balancing Domain Diversity and Invariance
- arxiv url: http://arxiv.org/abs/2502.03835v1
- Date: Thu, 06 Feb 2025 07:41:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:32:40.831861
- Title: Single-Domain Generalized Object Detection by Balancing Domain Diversity and Invariance
- Title(参考訳): 領域の多様性と不変性とのバランスによる単ドメイン一般化物体検出
- Authors: Zhenwei He, Hongsu Ni,
- Abstract要約: オブジェクト検出のための単一ドメイン一般化(S-DGOD)は、単一のソースドメインから未知のターゲットドメインに知識を転送することを目的としている。
ドメイン間の固有の多様性のため、不変性に過度に重点を置いていると、モデルが実際の画像の違いを見落としてしまう可能性がある。
- 参考スコア(独自算出の注目度): 4.782038032310931
- License:
- Abstract: Single-domain generalization for object detection (S-DGOD) aims to transfer knowledge from a single source domain to unseen target domains. In recent years, many models have focused primarily on achieving feature invariance to enhance robustness. However, due to the inherent diversity across domains, an excessive emphasis on invariance can cause the model to overlook the actual differences between images. This overemphasis may complicate the training process and lead to a loss of valuable information. To address this issue, we propose the Diversity Invariance Detection Model (DIDM), which focuses on the balance between the diversity of domain-specific and invariance cross domains. Recognizing that domain diversity introduces variations in domain-specific features, we introduce a Diversity Learning Module (DLM). The DLM is designed to preserve the diversity of domain-specific information with proposed feature diversity loss while limiting the category semantics in the features. In addition, to maintain domain invariance, we incorporate a Weighted Aligning Module (WAM), which aligns features without compromising feature diversity. We conducted our model on five distinct datasets, which have illustrated the superior performance and effectiveness of the proposed model.
- Abstract(参考訳): オブジェクト検出のための単一ドメイン一般化(S-DGOD)は、単一のソースドメインから未知のターゲットドメインに知識を転送することを目的としている。
近年、多くのモデルは、強靭性を高めるために特徴不変性を達成することに重点を置いている。
しかし、ドメイン間の固有の多様性のため、不変性に過度に重点を置くと、モデルが実際の画像の違いを見落としてしまう可能性がある。
この過度の強調は、トレーニングプロセスが複雑になり、貴重な情報が失われる可能性がある。
この問題に対処するため,ドメイン固有領域と不変領域の多様性のバランスに焦点をあてたDIDM(Diversity Invariance Detection Model)を提案する。
ドメインの多様性がドメイン固有の特徴のバリエーションをもたらすことを認識し、多様性学習モジュール(DLM)を導入する。
DLMは、特徴のカテゴリ意味を制限しつつ、特徴の多様性を損なうようなドメイン固有情報の多様性を維持するように設計されている。
さらに、ドメインの不変性を維持するために、特徴の多様性を損なうことなく機能を整列するWeighted Aligning Module (WAM)を導入する。
本モデルでは,提案モデルの性能と有効性を示す5つの異なるデータセットを用いて実験を行った。
関連論文リスト
- Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA)は、アノテートするターゲットデータの限られた数を選択することで、新しいターゲットドメインにおけるモデル適応を最大限に向上することを目的としている。
この設定は、複数のソースからトレーニングデータを収集するより実践的なシナリオを無視します。
これは、ADAを単一のソースドメインから複数のソースドメインに拡張する、新しい、挑戦的な知識転送の設定を目標にしています。
論文 参考訳(メタデータ) (2023-11-21T13:12:21Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
マルチソースアン教師付きドメイン適応(MUDA)は、関連するソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
アクティブマルチドメイン適応(D3AAMDA)のための動的ドメイン不一致適応法(Dynamic Domain Disrepancy Adjustment)を提案する。
このメカニズムは、ソースドメインとターゲットドメイン間の特徴のアライメントレベルを制御し、ソースドメイン内のローカルな有利な特徴情報を効果的に活用する。
論文 参考訳(メタデータ) (2023-07-26T09:40:19Z) - Identifiable Latent Causal Content for Domain Adaptation under Latent Covariate Shift [82.14087963690561]
マルチソースドメイン適応(MSDA)は、ラベル付き対象ドメインのラベル予測関数を学習する際の課題に対処する。
本稿では,潜在コンテンツ変数と潜時スタイル変数とともに,ドメイン間の潜時雑音を導入し,複雑な因果生成モデルを提案する。
提案手法は、シミュレーションと実世界の両方のデータセットに対して、例外的な性能と有効性を示す。
論文 参考訳(メタデータ) (2022-08-30T11:25:15Z) - Multi-Scale Multi-Target Domain Adaptation for Angle Closure
Classification [50.658613573816254]
角度閉包分類のためのM2DAN(Multi-scale Multi-target Domain Adversarial Network)を提案する。
異なるスケールでのこれらのドメイン不変性に基づいて、ソースドメインで訓練されたディープモデルは、複数のターゲットドメインの角度クロージャを分類することができる。
論文 参考訳(メタデータ) (2022-08-25T15:27:55Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
ドメインの一般化は、モデルを目に見えないターゲットのドメインに安全に転送することを目的としています。
AdaODMは、異なるターゲットドメインに対するテスト時にソースモデルを適応的に修正する。
その結果,AdaODMは未確認領域の一般化能力を安定的に向上することがわかった。
論文 参考訳(メタデータ) (2022-08-03T11:51:11Z) - Domain Attention Consistency for Multi-Source Domain Adaptation [100.25573559447551]
主な設計は、伝達可能な特徴(属性)を識別することを目的とした機能チャネルアテンションモジュールである。
3つのMSDAベンチマーク実験により、DAC-Netは、それらすべてに対して、新たなパフォーマンスを実現することが示された。
論文 参考訳(メタデータ) (2021-11-06T15:56:53Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Multidomain Multimodal Fusion For Human Action Recognition Using
Inertial Sensors [1.52292571922932]
入力モダリティの異なる領域から相補的特徴と相補的特徴を抽出する新しいマルチドメイン多モード融合フレームワークを提案する。
異なる領域の特徴は畳み込みニューラルネットワーク(CNN)によって抽出され、続いてCCF(Canonical correlation based Fusion)によって融合され、人間の行動認識の精度が向上する。
論文 参考訳(メタデータ) (2020-08-22T03:46:12Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
ドメイン一般化(DG)は、人物再識別(Re-ID)を扱うための有望なソリューションとして機能する
本稿では、複数のソースドメインの分布を選択的に整列させることにより、この問題に対処するDual Distribution Alignment Network(DDAN)を提案する。
大規模なDomain Generalization Re-ID(DG Re-ID)ベンチマークでDDANを評価した。
論文 参考訳(メタデータ) (2020-07-27T00:08:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。