Mirror Descent Actor Critic via Bounded Advantage Learning
- URL: http://arxiv.org/abs/2502.03854v1
- Date: Thu, 06 Feb 2025 08:14:03 GMT
- Title: Mirror Descent Actor Critic via Bounded Advantage Learning
- Authors: Ryo Iwaki,
- Abstract summary: Mirror Descent Value Iteration (MDVI) uses both Kullback-Leibler divergence and entropy as regularizers in its value and policy updates.
We propose Mirror Descent Actor Critic (MDAC) as an actor-critic style instantiation of MDVI for continuous action domains.
- Score: 0.0
- License:
- Abstract: Regularization is a core component of recent Reinforcement Learning (RL) algorithms. Mirror Descent Value Iteration (MDVI) uses both Kullback-Leibler divergence and entropy as regularizers in its value and policy updates. Despite its empirical success in discrete action domains and strong theoretical guarantees, the performance of a MDVI-based method does not surpass an entropy-only-regularized method in continuous action domains. In this study, we propose Mirror Descent Actor Critic (MDAC) as an actor-critic style instantiation of MDVI for continuous action domains, and show that its empirical performance is significantly boosted by bounding the actor's log-density terms in the critic's loss function, compared to a non-bounded naive instantiation. Further, we relate MDAC to Advantage Learning by recalling that the actor's log-probability is equal to the regularized advantage function in tabular cases, and theoretically discuss when and why bounding the advantage terms is validated and beneficial. We also empirically explore a good choice for the bounding function, and show that MDAC perfoms better than strong non-regularized and entropy-only-regularized methods with an appropriate choice of the bounding function.
Related papers
- Learning Difference-of-Convex Regularizers for Inverse Problems: A Flexible Framework with Theoretical Guarantees [0.6906005491572401]
Learning effective regularization is crucial for solving ill-posed inverse problems.
In this paper, we show that a broader optimal non regularizers functions, difference-of-DC functions, can improve empirical performance.
arXiv Detail & Related papers (2025-02-01T00:40:24Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
We study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation.
First, we derive a novel high-dimensional probability convergence guarantee that depends explicitly on the variance and holds under weak conditions.
We further establish refined high-dimensional Berry-Esseen bounds over the class of convex sets that guarantee faster rates than those in the literature.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Efficient Off-Policy Learning for High-Dimensional Action Spaces [22.129001951441015]
Existing off-policy reinforcement learning algorithms often rely on an explicit state-action-value function representation.
We present an efficient approach that utilizes only a state-value function as the critic for off-policy deep reinforcement learning.
arXiv Detail & Related papers (2024-03-07T12:45:51Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration.
Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks.
arXiv Detail & Related papers (2024-02-22T13:22:06Z) - Actor Prioritized Experience Replay [0.0]
Prioritized Experience Replay (PER) allows agents to learn from transitions sampled with non-uniform probability proportional to their temporal-difference (TD) error.
We introduce a novel experience replay sampling framework for actor-critic methods, which also regards issues with stability and recent findings behind the poor empirical performance of PER.
An extensive set of experiments verifies our theoretical claims and demonstrates that the introduced method significantly outperforms the competing approaches.
arXiv Detail & Related papers (2022-09-01T15:27:46Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.