論文の概要: Counterfactual Query Rewriting to Use Historical Relevance Feedback
- arxiv url: http://arxiv.org/abs/2502.03891v1
- Date: Thu, 06 Feb 2025 09:05:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:29:19.428109
- Title: Counterfactual Query Rewriting to Use Historical Relevance Feedback
- Title(参考訳): 履歴的関連性フィードバックを用いた偽クエリ書き換え
- Authors: Jüri Keller, Maik Fröbe, Gijs Hendriksen, Daria Alexander, Martin Potthast, Matthias Hagen, Philipp Schaer,
- Abstract要約: 本稿では,ユーザクエリの書き直し手法を提案する。
関連文書から抽出された用語でクエリを拡張するか、あるいは、関連文書を現在のコーパスの上位にランク付けするいわゆるキークエリを導出する。
CLEF LongEvalのシナリオでは、履歴関連フィードバックによるクエリの書き直しにより、検索効率が向上し、計算コストの高いトランスフォーマーベースのアプローチよりも優れた結果が得られる。
- 参考スコア(独自算出の注目度): 25.893083499927776
- License:
- Abstract: When a retrieval system receives a query it has encountered before, previous relevance feedback, such as clicks or explicit judgments can help to improve retrieval results. However, the content of a previously relevant document may have changed, or the document might not be available anymore. Despite this evolved corpus, we counterfactually use these previously relevant documents as relevance signals. In this paper we proposed approaches to rewrite user queries and compare them against a system that directly uses the previous qrels for the ranking. We expand queries with terms extracted from the previously relevant documents or derive so-called keyqueries that rank the previously relevant documents to the top of the current corpus. Our evaluation in the CLEF LongEval scenario shows that rewriting queries with historical relevance feedback improves the retrieval effectiveness and even outperforms computationally expensive transformer-based approaches.
- Abstract(参考訳): 検索システムが以前遭遇したクエリを受信すると、クリックや明示的な判断といった過去の関連性フィードバックが検索結果の改善に役立つ。
しかし、以前関係していた文書の内容が変わったり、文書がもはや入手できないかもしれない。
この進化したコーパスにもかかわらず、我々はこれらの関連文書を関連信号として偽装的に使用します。
本稿では,ユーザクエリの書き直し手法を提案する。
関連文書から抽出された用語でクエリを拡張するか、あるいは、関連文書を現在のコーパスの上位にランク付けするいわゆるキークエリを導出する。
CLEF LongEvalのシナリオでは、履歴関連フィードバックによるクエリの書き直しにより、検索効率が向上し、計算コストの高いトランスフォーマーベースのアプローチよりも優れた結果が得られる。
関連論文リスト
- Cognitive-Aligned Document Selection for Retrieval-augmented Generation [2.9060210098040855]
本稿では,クエリを動的に更新し,高品質で信頼性の高い検索文書をフィルタリングするGGatrievalを提案する。
ユーザクエリを構文コンポーネントにパースし、検索したドキュメントときめ細かいグラウンドアライメントを実行する。
提案手法では,検索した文書をフィルタリングするための新しい基準を導入し,ターゲット情報を取得するための人的戦略を密にエミュレートする。
論文 参考訳(メタデータ) (2025-02-17T13:00:15Z) - Reproducible Hybrid Time-Travel Retrieval in Evolving Corpora [1.9202615342033464]
本稿では,高速検索のためのLuceneと,バージョン付きおよびタイムスタンプ付きインデックスを維持する列ストア型検索システムを組み合わせたハイブリッド検索システムを提案する。
論文 参考訳(メタデータ) (2024-11-06T16:57:55Z) - Generating Natural Language Queries for More Effective Systematic Review
Screening Prioritisation [53.77226503675752]
現在の技術状況では、レビューの最終タイトルをクエリとして、BERTベースのニューラルランクラを使用してドキュメントのランク付けに使用しています。
本稿では,ChatGPT や Alpaca などの命令ベース大規模言語モデルによって生成される文書の検索に使用される Boolean クエリやクエリなど,スクリーニングを優先するクエリの代替源について検討する。
私たちのベストアプローチは、スクリーニング時に利用可能な情報に基づいて実現されるだけでなく、最終タイトルと同じような効果があります。
論文 参考訳(メタデータ) (2023-09-11T05:12:14Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
本稿では,学習中に擬似クエリを利用して,生成したクエリと実際のクエリとの関係を徐々に向上させるカリキュラムサンプリング戦略を提案する。
ドメイン内およびドメイン外両方のデータセットに対する実験結果から,本手法が従来の高密度検索モデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-12-18T15:57:46Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - LoL: A Comparative Regularization Loss over Query Reformulation Losses
for Pseudo-Relevance Feedback [70.44530794897861]
Pseudo-Relevance feedback (PRF) は、検索精度を向上させるための効果的なクエリ修正手法であることが証明されている。
既存のPRF手法は、同じクエリから派生した修正クエリを個別に扱うが、異なる数のフィードバックドキュメントを使用する。
そこで我々はLos-over-Loss(LoL)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-25T10:42:50Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
本稿では,最小計算コストで広範囲の検索モデルの性能を向上させるためのフレームワークを提案する。
ベース密度検索法により抽出された事前計算された文書表現を利用する。
実行時に第一段階のメソッドの上に無視可能な計算オーバーヘッドを発生させ、最先端の高密度検索手法と簡単に組み合わせられるようにする。
論文 参考訳(メタデータ) (2021-12-16T10:25:26Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
本稿では,疑似関連性フィードバック(PRF)を用いて高密度検索のためのクエリ表現を改善する新しいクエリエンコーダであるANCE-PRFを提案する。
ANCE-PRF は BERT エンコーダを使用し、検索モデルである ANCE からクエリとトップ検索されたドキュメントを消費し、関連ラベルから直接クエリの埋め込みを生成する。
PRFエンコーダは、学習された注意機構でノイズを無視しながら、PRF文書から関連および補完的な情報を効果的にキャプチャする。
論文 参考訳(メタデータ) (2021-08-30T18:10:26Z) - Knowledge-Aided Open-Domain Question Answering [58.712857964048446]
本稿では,知識支援型オープンドメインQA(KAQA)手法を提案する。
文書検索の際、質問と他の文書との関係を考慮し、候補文書を採点する。
回答の再ランク付けの間、候補の回答は、自身のコンテキストだけでなく、他の文書からのヒントを使って再ランクされる。
論文 参考訳(メタデータ) (2020-06-09T13:28:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。