Deep Learning-Optimized, Fabrication Error-Tolerant Photonic Crystal Nanobeam Cavities for Scalable On-Chip Diamond Quantum Systems
- URL: http://arxiv.org/abs/2502.03987v1
- Date: Thu, 06 Feb 2025 11:43:51 GMT
- Title: Deep Learning-Optimized, Fabrication Error-Tolerant Photonic Crystal Nanobeam Cavities for Scalable On-Chip Diamond Quantum Systems
- Authors: Sander van Haagen, Salahuddin Nur, Ryoichi Ishihara,
- Abstract summary: Cavity-enhanced diamond color center qubits are ideal for large-scale, modular quantum computers.
However, diamond's unique material properties pose challenges in manufacturing nanophotonic devices.
A deep learning-based optimization methodology is developed to enhance the fabrication error tolerance of nanophotonic devices.
- Score: 0.0
- License:
- Abstract: Cavity-enhanced diamond color center qubits can be initialized, manipulated, entangled, and read individually with high fidelity, which makes them ideal for large-scale, modular quantum computers, quantum networks, and distributed quantum sensing systems. However, diamond's unique material properties pose significant challenges in manufacturing nanophotonic devices, leading to fabrication-induced structural imperfections and inaccuracies in defect implantation, which hinder reproducibility, degrade optical properties and compromise the spatial coupling of color centers to small mode-volume cavities. A cavity design tolerant to fabrication imperfections, such as surface roughness, sidewall slant, and non-optimal emitter positioning, can improve coupling efficiency while simplifying fabrication. To address this challenge, a deep learning-based optimization methodology is developed to enhance the fabrication error tolerance of nanophotonic devices. Convolutional neural networks (CNNs) are applied to promising designs, such as L2 and fishbone nanobeam cavities, predicting Q-factors up to one million times faster than traditional finite-difference time-domain (FDTD) simulations, enabling efficient optimization of complex, high-dimensional parameter spaces. The CNNs achieve prediction errors below 3.99% and correlation coefficients up to 0.988. Optimized structures demonstrate a 52% reduction in Q-factor degradation, achieving quality factors of 5e4 under real-world conditions and a two-fold expansion in field distribution, enabling efficient coupling of non-optimally positioned emitters. This methodology enables scalable, high-yield manufacturing of robust nanophotonic devices, including the cavity-enhanced diamond quantum systems developed in this study.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Fabrication of Sawfish photonic crystal cavities in bulk diamond [0.0]
"Sawfish" cavities are proposed to enhance the emission rate by a factor of 46 and couple photons into a single-mode fiber with an efficiency of 88%.
The presented process allows for the fabrication of fully suspended devices with a total length of 20.5 $mu$m and features size as small as 40 nm.
arXiv Detail & Related papers (2023-11-07T00:05:46Z) - Multicone Diamond Waveguides for Nanoscale Quantum Sensing [0.5131152350448099]
The electronic spin of the nitrogen-vacancy center in diamond is a promising quantum sensor for detecting nanoscopic magnetic and electric fields.
Here, we address the challenge of the poor signal-to-noise ratio (SNR) of prevalent optical spin-readout techniques.
We optimize the structure in simulation, observing an increase in collection efficiency for tall ($geq$ 5 $mu$m) pillars with tapered sidewalls.
An optimized device yields increased SNR, owing to improvements in collimation and directionality of emission.
arXiv Detail & Related papers (2023-06-05T15:28:12Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - Self-aligned patterning technique for fabricating high-performance
diamond sensor arrays with nanoscale precision [13.133647356160843]
We propose a facile self-aligned patterning technique with the doping precision can reach 15nm.
We demonstrate this technique by fabricating diamond nanopillar sensor arrays, which show high consistency and near-optimal photon counts.
This technique should facilitate the development of parallel quantum sensing and scalable information processing.
arXiv Detail & Related papers (2022-03-17T13:48:24Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Resonant Excitation and Purcell Enhancement of Coherent Nitrogen-Vacancy
Centers Coupled to a Fabry-P\'{e}rot Micro-Cavity [0.0]
nitrogen-vacancy (NV) center in diamond has been established as a prime building block for quantum networks.
Poor optical coherence of near-surface NV centers has so far prevented their resonant optical control, as would be required for entanglement generation.
We demonstrate resonant addressing of individual, fiber-cavity-coupled NV centers, and collection of their Purcell-enhanced coherent photon emission.
arXiv Detail & Related papers (2020-09-17T10:48:16Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.