論文の概要: Complete FSM Testing Using Strong Separability
- arxiv url: http://arxiv.org/abs/2502.04035v1
- Date: Thu, 06 Feb 2025 12:54:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:33:12.664738
- Title: Complete FSM Testing Using Strong Separability
- Title(参考訳): 強分離性を用いた完全FSM試験
- Authors: Robert M. Hierons, Mohammad Reza Mousavi,
- Abstract要約: アパルタネス(Apartness)は、構成数学で開発された概念であり、状態分離のための強力な概念として再浮上している。
我々は、ハイブリッドやシステムなど、定量的モデルにおける相違性の根本的な欠点を識別する。
我々は、強い分離性(strong separability)と呼ばれる、密接に関連する代替案を提案する。
- 参考スコア(独自算出の注目度): 1.0128808054306186
- License:
- Abstract: Apartness is a concept developed in constructive mathematics, which has resurfaced as a powerful notion for separating states in the area of model learning and model-based testing. We identify some fundamental shortcomings of apartness in quantitative models, such as in hybrid and stochastic systems. We propose a closely-related alternative, called strong separability and show that using it to replace apartness addresses the identified shortcomings. We adapt a well-known complete model-based testing method, called the Harmonized State Identifiers (HSI) method, to adopt the proposed notion of strong separability. We prove that the adapted HSI method is complete. As far as we are aware, this is the first work to show how complete test suites can be generated for quantitative models such as those found in the development of cyber-physical systems.
- Abstract(参考訳): Apartnessは構成数学で開発された概念であり、モデル学習とモデルベーステストの領域における状態を分離するための強力な概念として再浮上してきた。
我々は、ハイブリッドシステムや確率システムなど、定量的モデルにおける相違性の根本的な欠点を識別する。
我々は、強い分離性(strong separability)と呼ばれる、密接に関連する代替案を提案する。
本研究では,HSI法(Harmonized State Identifiers, Harmonized State Identifiers, Harmonized State Identifiers, HSI)と呼ばれる,よく知られた完全モデルベーステスト手法を適用し,強い分離性の概念を採用する。
適応型HSI法が完全であることを示す。
私たちが知っている限りでは、サイバー物理システムの開発で見られるような定量的モデルに対して、完全なテストスイートがいかに生成できるかを示す最初の研究である。
関連論文リスト
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
本稿では,ガウスモデルの混合を連続学習フレームワークに組み込むことを提案する。
固定抽出器を用いたメモリフリーシナリオにおいて,本モデルが効果的に学習可能であることを示す。
論文 参考訳(メタデータ) (2023-07-09T04:33:19Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Bayesian Evidential Learning for Few-Shot Classification [22.46281648187903]
Few-Shot 分類は、非常に限定されたラベル付きサンプルをベースクラスから新しいクラスに一般化することを目的としている。
最先端のソリューションは、サンプル間の距離を計算するための良い計量と表現空間を見つけることを含む。
有望な精度性能にもかかわらず、計量ベースのFSC手法の不確実性を効果的にモデル化する方法は依然として課題である。
論文 参考訳(メタデータ) (2022-07-19T03:58:00Z) - Model-Agnostic Few-Shot Open-Set Recognition [36.97433312193586]
我々はFew-Shot Open-Set Recognition (FSOSR) 問題に取り組む。
既存のモデルにプラグイン可能なモデルに依存しない推論手法の開発に注力する。
オープン・セット・トランスダクティブ・インフォメーション・最大化手法OSTIMを提案する。
論文 参考訳(メタデータ) (2022-06-18T16:27:59Z) - FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
Modulation [69.34011200590817]
本稿では,特徴量線形変調の概念に基づく暗黙のアンサンブル手法であるFiLM-Ensembleを紹介する。
単一ディープネットワークのネットワークアクティベーションをFiLMで変調することにより、高多様性のモデルアンサンブルを得る。
我々は、FiLM-Ensembleが他の暗黙のアンサンブル法よりも優れており、ネットワークの明示的なアンサンブルの上限に非常に近いことを示す。
論文 参考訳(メタデータ) (2022-05-31T18:33:15Z) - Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of
Partial Differential Equations [5.584060970507507]
Parsimony Enhanced Sparse Bayesian Learning (PeSBL) 法は非線形力学系の部分微分方程式 (PDE) を解析するために開発された。
数値ケーススタディの結果,多くの標準力学系のPDEをPeSBL法を用いて正確に同定できることが示唆された。
論文 参考訳(メタデータ) (2021-07-08T00:56:11Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - A Bootstrap-based Method for Testing Network Similarity [0.0]
本稿では,一致したネットワーク推論問題について検討する。
目的は、共通のノードセットで定義された2つのネットワークが、特定の類似性を示すかどうかを決定することである。
類似性の2つの概念は、 (i) 等価性、すなわち、ネットワークが同じランダムグラフモデルから生じるかどうかをテストすること、 (ii) スケーリング、すなわち、それらの確率が未知のスケーリング定数に対して比例するかどうかをテストすることである。
論文 参考訳(メタデータ) (2019-11-15T20:50:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。