Predicting Large Language Model Capabilities on Closed-Book QA Tasks Using Only Information Available Prior to Training
- URL: http://arxiv.org/abs/2502.04066v1
- Date: Thu, 06 Feb 2025 13:23:53 GMT
- Title: Predicting Large Language Model Capabilities on Closed-Book QA Tasks Using Only Information Available Prior to Training
- Authors: Changhao Jiang, Ming Zhang, Junjie Ye, Xiaoran Fan, Yifei Cao, Jiajun Sun, Zhiheng Xi, Shihan Dou, Yi Dong, Yujiong Shen, Jingqi Tong, Zhen Wang, Tao Liang, Zhihui Fei, Mingyang Wan, Guojun Ma, Qi Zhang, Tao Gui, Xuanjing Huang,
- Abstract summary: We focus on predicting performance on Closed-book Question Answering (CBQA) tasks, which are closely tied to pre-training data and knowledge retention.
We address three major challenges: 1) mastering the entire pre-training process, especially data construction; 2) evaluating a model's knowledge retention; and 3) predicting task-specific knowledge retention using only information available prior to training.
We introduce the SMI metric, an information-theoretic measure that quantifies the relationship between pre-training data, model size, and task-specific knowledge retention.
- Score: 51.60874286674908
- License:
- Abstract: The GPT-4 technical report from OpenAI suggests that model performance on specific tasks can be predicted prior to training, though methodologies remain unspecified. This approach is crucial for optimizing resource allocation and ensuring data alignment with target tasks. To achieve this vision, we focus on predicting performance on Closed-book Question Answering (CBQA) tasks, which are closely tied to pre-training data and knowledge retention. We address three major challenges: 1) mastering the entire pre-training process, especially data construction; 2) evaluating a model's knowledge retention; and 3) predicting task-specific knowledge retention using only information available prior to training. To tackle these challenges, we pre-train three large language models (i.e., 1.6B, 7B, and 13B) using 560k dollars and 520k GPU hours. We analyze the pre-training data with knowledge triples and assess knowledge retention using established methods. Additionally, we introduce the SMI metric, an information-theoretic measure that quantifies the relationship between pre-training data, model size, and task-specific knowledge retention. Our experiments reveal a strong linear correlation ($\text{R}^2 > 0.84$) between the SMI metric and the model's accuracy on CBQA tasks across models of varying sizes (i.e., 1.1B, 1.6B, 7B, and 13B). The dataset, model, and code are available at https://github.com/yuhui1038/SMI.
Related papers
- Value-Based Deep RL Scales Predictably [100.21834069400023]
We show that value-based off-policy RL methods are predictable despite community lore regarding their pathological behavior.
We validate our approach using three algorithms: SAC, BRO, and PQL on DeepMind Control, OpenAI gym, and IsaacGym.
arXiv Detail & Related papers (2025-02-06T18:59:47Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Skill-it! A Data-Driven Skills Framework for Understanding and Training
Language Models [29.17711426767209]
We study how to best select data that leads to good downstream model performance across tasks.
We develop a new framework based on a simple hypothesis: just as humans acquire interdependent skills in a deliberate order, language models also follow a natural order when learning a set of skills from their training data.
arXiv Detail & Related papers (2023-07-26T18:01:49Z) - Where Should I Spend My FLOPS? Efficiency Evaluations of Visual
Pre-training Methods [29.141145775835106]
Given a fixed FLOP budget, what are the best datasets, models, and (self-supervised) training methods for obtaining high accuracy on representative visual tasks?
We examine five large-scale datasets (JFT-300M, ALIGN, ImageNet-1K, ImageNet-21K, and COCO) and six pre-training methods (CLIP, DINO, SimCLR, BYOL, Masked Autoencoding, and supervised)
Our results call into question the commonly-held assumption that self-supervised methods inherently scale to large, uncurated data.
arXiv Detail & Related papers (2022-09-30T17:04:55Z) - Knowledge Distillation as Efficient Pre-training: Faster Convergence,
Higher Data-efficiency, and Better Transferability [53.27240222619834]
Knowledge Distillation as Efficient Pre-training aims to efficiently transfer the learned feature representation from pre-trained models to new student models for future downstream tasks.
Our method performs comparably with supervised pre-training counterparts in 3 downstream tasks and 9 downstream datasets requiring 10x less data and 5x less pre-training time.
arXiv Detail & Related papers (2022-03-10T06:23:41Z) - Fast Uncertainty Quantification for Deep Object Pose Estimation [91.09217713805337]
Deep learning-based object pose estimators are often unreliable and overconfident.
In this work, we propose a simple, efficient, and plug-and-play UQ method for 6-DoF object pose estimation.
arXiv Detail & Related papers (2020-11-16T06:51:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.