論文の概要: Safeguarding connected autonomous vehicle communication: Protocols, intra- and inter-vehicular attacks and defenses
- arxiv url: http://arxiv.org/abs/2502.04201v1
- Date: Thu, 06 Feb 2025 16:43:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:32:56.723545
- Title: Safeguarding connected autonomous vehicle communication: Protocols, intra- and inter-vehicular attacks and defenses
- Title(参考訳): 接続された自動運転車通信の保護:プロトコル、車内および車内攻撃および防衛
- Authors: Mohammed Aledhari, Rehma Razzak, Mohamed Rahouti, Abbas Yazdinejad, Reza M. Parizi, Basheer Qolomany, Mohsen Guizani, Junaid Qadir, Ala Al-Fuqaha,
- Abstract要約: 本稿では,既存のセキュリティフレームワークとプロトコルを詳細に分析することによって貢献する。
本稿では,CAV通信のセキュリティ向上のためのベストプラクティスを提案する。
主な貢献は、CAVセキュリティ脅威の新しい分類システムの開発である。
- 参考スコア(独自算出の注目度): 30.18378702161015
- License:
- Abstract: The advancements in autonomous driving technology, coupled with the growing interest from automotive manufacturers and tech companies, suggest a rising adoption of Connected Autonomous Vehicles (CAVs) in the near future. Despite some evidence of higher accident rates in AVs, these incidents tend to result in less severe injuries compared to traditional vehicles due to cooperative safety measures. However, the increased complexity of CAV systems exposes them to significant security vulnerabilities, potentially compromising their performance and communication integrity. This paper contributes by presenting a detailed analysis of existing security frameworks and protocols, focusing on intra- and inter-vehicle communications. We systematically evaluate the effectiveness of these frameworks in addressing known vulnerabilities and propose a set of best practices for enhancing CAV communication security. The paper also provides a comprehensive taxonomy of attack vectors in CAV ecosystems and suggests future research directions for designing more robust security mechanisms. Our key contributions include the development of a new classification system for CAV security threats, the proposal of practical security protocols, and the introduction of use cases that demonstrate how these protocols can be integrated into real-world CAV applications. These insights are crucial for advancing secure CAV adoption and ensuring the safe integration of autonomous vehicles into intelligent transportation systems.
- Abstract(参考訳): 自動運転車技術の進歩は、自動車メーカーやテクノロジー企業の関心の高まりと相まって、近い将来にコネクテッド・オートモービルズ(CAV)の採用が増加することを示唆している。
AVの事故率が高いという証拠はいくつかあるが、これらの事故は、協力的な安全対策により従来の車両に比べて重傷を負う傾向にある。
しかし、CAVシステムの複雑さが増大すると、それらは重大なセキュリティ上の脆弱性に晒され、パフォーマンスと通信の整合性を損なう可能性がある。
本稿では,車内および車間通信に焦点をあて,既存のセキュリティフレームワークとプロトコルの詳細な分析を行う。
我々は、既知の脆弱性に対処する上で、これらのフレームワークの有効性を体系的に評価し、CAV通信セキュリティを強化するためのベストプラクティスセットを提案する。
また,CAVエコシステムにおける攻撃ベクトルの包括的分類を提供し,より堅牢なセキュリティ機構を設計するための今後の研究方向性を提案する。
我々の重要な貢献は、CAVセキュリティ脅威の新しい分類システムの開発、実用的なセキュリティプロトコルの提案、そしてこれらのプロトコルが現実世界のCAVアプリケーションにどのように統合できるかを示すユースケースの導入である。
これらの知見は、安全なCAVの採用を推進し、自動運転車をインテリジェントな輸送システムに安全に統合するために不可欠である。
関連論文リスト
- Collaborative Approaches to Enhancing Smart Vehicle Cybersecurity by AI-Driven Threat Detection [0.0]
自動車産業はコネクテッド・アンド・オートマチック・カー(CAV)をますます採用している
新しい脆弱性とセキュリティ要件の出現により、高度な技術の統合は、CAVサイバーセキュリティを強化するための有望な道を示す。
自動運転車におけるサイバーセキュリティのロードマップは、効率的な侵入検知システムとAIベースの技術の重要性を強調している。
論文 参考訳(メタデータ) (2024-12-31T04:08:42Z) - VMGuard: Reputation-Based Incentive Mechanism for Poisoning Attack Detection in Vehicular Metaverse [52.57251742991769]
車両メタバースガード(VMGuard)は、車両メタバースシステムをデータ中毒攻撃から保護する。
VMGuardは、参加するSIoTデバイスの信頼性を評価するために、評判に基づくインセンティブメカニズムを実装している。
当社のシステムは,従来は誤分類されていた信頼性の高いSIoTデバイスが,今後の市場ラウンドへの参加を禁止していないことを保証します。
論文 参考訳(メタデータ) (2024-12-05T17:08:20Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Survey on Security Attacks in Connected and Autonomous Vehicular Systems [0.0]
本研究は,CAV環境におけるサイバーセキュリティの現状について概説する。
CAVのコンテキストにおけるサイバーセキュリティの脅威と弱点を、車両ネットワークに対する攻撃、インターネットに対する大規模な攻撃、その他の3つのグループに分類する。
CAVを確保するための最も最新の防衛戦術を詳述し、その効果を分析している。
論文 参考訳(メタデータ) (2023-10-14T06:37:05Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of
Connected Autonomous Vehicles in Challenging Scenarios [10.37986799561165]
通信技術はコネクテッド・自動運転車(CAV)間の協調を可能にする
CAVのための並列安全シールドを備えた制約付きマルチエージェント強化学習(MARL)フレームワークを提案する。
その結果,提案手法は難易度の高いシナリオにおいて,システムの安全性と効率を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2022-10-05T14:39:07Z) - Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: Next
Frontier for Intelligent Safe-Driving Assessment [17.926728975133113]
コネクテッド・自動運転車(CAV)の安全運転状況の確保は、引き続き広く懸念されている。
アルゴリズム対応型intElligent Safe-Driven AssessmentmenT(BEST)の新たなフレームワークを提案し、スマートで信頼性の高いアプローチを提供します。
論文 参考訳(メタデータ) (2021-04-09T19:08:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。