Dark Distillation: Backdooring Distilled Datasets without Accessing Raw Data
- URL: http://arxiv.org/abs/2502.04229v1
- Date: Thu, 06 Feb 2025 17:14:17 GMT
- Title: Dark Distillation: Backdooring Distilled Datasets without Accessing Raw Data
- Authors: Ziyuan Yang, Ming Yan, Yi Zhang, Joey Tianyi Zhou,
- Abstract summary: This work is the first to address a more realistic and concerning threat: attackers may intercept the dataset distribution process, inject backdoors into the distilled datasets, and redistribute them to users.
While distilled datasets were previously considered resistant to backdoor attacks, we demonstrate that they remain vulnerable to such attacks.
Our attack method is efficient, capable of a malicious distilled dataset in under one minute in certain cases.
- Score: 48.69361050757504
- License:
- Abstract: Dataset distillation (DD) enhances training efficiency and reduces bandwidth by condensing large datasets into smaller synthetic ones. It enables models to achieve performance comparable to those trained on the raw full dataset and has become a widely adopted method for data sharing. However, security concerns in DD remain underexplored. Existing studies typically assume that malicious behavior originates from dataset owners during the initial distillation process, where backdoors are injected into raw datasets. In contrast, this work is the first to address a more realistic and concerning threat: attackers may intercept the dataset distribution process, inject backdoors into the distilled datasets, and redistribute them to users. While distilled datasets were previously considered resistant to backdoor attacks, we demonstrate that they remain vulnerable to such attacks. Furthermore, we show that attackers do not even require access to any raw data to inject the backdoors successfully. Specifically, our approach reconstructs conceptual archetypes for each class from the model trained on the distilled dataset. Backdoors are then injected into these archetypes to update the distilled dataset. Moreover, we ensure the updated dataset not only retains the backdoor but also preserves the original optimization trajectory, thus maintaining the knowledge of the raw dataset. To achieve this, a hybrid loss is designed to integrate backdoor information along the benign optimization trajectory, ensuring that previously learned information is not forgotten. Extensive experiments demonstrate that distilled datasets are highly vulnerable to backdoor attacks, with risks pervasive across various raw datasets, distillation methods, and downstream training strategies. Moreover, our attack method is efficient, capable of synthesizing a malicious distilled dataset in under one minute in certain cases.
Related papers
- Secure Federated Data Distillation [2.5311562666866494]
We propose a Secure Federated Data Distillation framework (SFDD) to decentralize the distillation process while preserving privacy.
Unlike existing Federated Distillation techniques that focus on training global models with distilled knowledge, our approach aims to produce a distilled dataset without exposing local contributions.
arXiv Detail & Related papers (2025-02-19T13:54:44Z) - Importance-Aware Adaptive Dataset Distillation [53.79746115426363]
Development of deep learning models is enabled by the availability of large-scale datasets.
dataset distillation aims to synthesize a compact dataset that retains the essential information from the large original dataset.
We propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance.
arXiv Detail & Related papers (2024-01-29T03:29:39Z) - Rethinking Backdoor Attacks on Dataset Distillation: A Kernel Method
Perspective [65.70799289211868]
We introduce two new theory-driven trigger pattern generation methods specialized for dataset distillation.
We show that our optimization-based trigger design framework informs effective backdoor attacks on dataset distillation.
arXiv Detail & Related papers (2023-11-28T09:53:05Z) - Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation [96.92250565207017]
We study the data efficiency and selection for the dataset distillation task.
By re-formulating the dynamics of distillation, we provide insight into the inherent redundancy in the real dataset.
We find the most contributing samples based on their causal effects on the distillation.
arXiv Detail & Related papers (2023-05-28T06:53:41Z) - A Comprehensive Study on Dataset Distillation: Performance, Privacy,
Robustness and Fairness [8.432686179800543]
We conduct extensive experiments to evaluate current state-of-the-art dataset distillation methods.
We successfully use membership inference attacks to show that privacy risks still remain.
This work offers a large-scale benchmarking framework for dataset distillation evaluation.
arXiv Detail & Related papers (2023-05-05T08:19:27Z) - Dataset Distillation: A Comprehensive Review [76.26276286545284]
dataset distillation (DD) aims to derive a much smaller dataset containing synthetic samples, based on which the trained models yield performance comparable with those trained on the original dataset.
This paper gives a comprehensive review and summary of recent advances in DD and its application.
arXiv Detail & Related papers (2023-01-17T17:03:28Z) - Backdoor Attacks Against Dataset Distillation [24.39067295054253]
This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain.
We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING.
Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases.
arXiv Detail & Related papers (2023-01-03T16:58:34Z) - Autoregressive Perturbations for Data Poisoning [54.205200221427994]
Data scraping from social media has led to growing concerns regarding unauthorized use of data.
Data poisoning attacks have been proposed as a bulwark against scraping.
We introduce autoregressive (AR) poisoning, a method that can generate poisoned data without access to the broader dataset.
arXiv Detail & Related papers (2022-06-08T06:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.