論文の概要: BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation
- arxiv url: http://arxiv.org/abs/2502.04314v1
- Date: Thu, 06 Feb 2025 18:56:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:32:58.841413
- Title: BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation
- Title(参考訳): BOUQuET: 翻訳におけるユニバーサル品質評価のためのデータセット、ベンチマーク、オープンイニシアチブ
- Authors: The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussà, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alex Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Ioannis Tsiamas, Arina Turkatenko, Albert Ventayol-Boada, Shireen Yates,
- Abstract要約: このデータセットは、まず英語以外の言語で手作りされている。
それぞれのソース言語は、世界の人口の半分が一般的に使っている23の言語に代表される。
- 参考スコア(独自算出の注目度): 28.456351723077088
- License:
- Abstract: This paper presents BOUQuET, a multicentric and multi-register/domain dataset and benchmark, and its broader collaborative extension initiative. This dataset is handcrafted in non-English languages first, each of these source languages being represented among the 23 languages commonly used by half of the world's population and therefore having the potential to serve as pivot languages that will enable more accurate translations. The dataset is specially designed to avoid contamination and be multicentric, so as to enforce representation of multilingual language features. In addition, the dataset goes beyond the sentence level, as it is organized in paragraphs of various lengths. Compared with related machine translation (MT) datasets, we show that BOUQuET has a broader representation of domains while simplifying the translation task for non-experts. Therefore, BOUQuET is specially suitable for the open initiative and call for translation participation that we are launching to extend it to a multi-way parallel corpus to any written language.
- Abstract(参考訳): 本稿では、マルチ中心・マルチレジストリ/ドメインデータセットとベンチマークであるBOUQuETと、そのより広範な協調的拡張イニシアチブについて述べる。
このデータセットは、まず非英語言語で手作りされ、これらのソース言語は、世界の人口の半分が一般的に使っている23の言語に代表されるため、より正確な翻訳を可能にするピボット言語として機能する可能性がある。
このデータセットは、汚染を回避し、多言語言語の特徴の表現を強制するために、特別に設計されている。
さらに、データセットは、様々な長さの段落で整理されるため、文レベルを超えている。
関連する機械翻訳(MT)データセットと比較すると,BOUQuETはドメインのより広い表現を持ち,非専門家の翻訳作業は簡単である。
したがってBOUQuETはオープンイニシアチブに特に適しており、翻訳参加を呼び掛けています。
関連論文リスト
- UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - Multi-EuP: The Multilingual European Parliament Dataset for Analysis of
Bias in Information Retrieval [62.82448161570428]
このデータセットは、多言語情報検索コンテキストにおける公平性を調べるために設計されている。
真正な多言語コーパスを持ち、24言語すべてに翻訳されたトピックを特徴としている。
文書に関連する豊富な人口統計情報を提供し、人口統計バイアスの研究を容易にする。
論文 参考訳(メタデータ) (2023-11-03T12:29:11Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Soft Prompt Decoding for Multilingual Dense Retrieval [30.766917713997355]
本稿では,MLIRタスクへの言語間情報検索のための最先端手法の適用により,準最適性能が得られることを示す。
これは多言語コレクションの不均一性と不均衡性に起因する。
KD-SPDはMLIRの新しいソフトプロンプトデコーディング手法で、異なる言語における文書の表現を同じ埋め込み空間に暗黙的に「翻訳」する。
論文 参考訳(メタデータ) (2023-05-15T21:17:17Z) - MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for
Natural Language Understanding in Task-Oriented Dialogue [115.32009638844059]
英語のみのNLU++データセットを拡張して、手動による翻訳を高、中、低リソース言語に含めます。
Multi3NLU++はそのマルチインテント特性のため、複雑で自然なユーザ目標を表現している。
我々はMulti3NLU++を用いて、インテント検出やスロットラベリングといった自然言語理解タスクに対して、最先端の多言語モデルをベンチマークする。
論文 参考訳(メタデータ) (2022-12-20T17:34:25Z) - EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form
Summarization in the Legal Domain [2.4815579733050157]
欧州連合法プラットフォーム(EUR-Lex)の法的行為を手作業でキュレートした文書要約に基づいて,EUR-Lex-Sumと呼ばれる新しいデータセットを提案する。
文書とその要約は、24の公用語のうちいくつかの言語間の段落整列データとして存在している。
言語毎に最大1,500の文書/要約ペアを取得し、24言語すべてで利用可能なテキストを含む375の言語横断的な法的行為のサブセットを含む。
論文 参考訳(メタデータ) (2022-10-24T17:58:59Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
プレトレインとファインチューンの間のギャップを埋めるために、コードスイッチングの復元タスクを追加して、バニラプレトレイン-ファインチューンパイプラインを拡張します。
提案手法は,言語間文表現距離を狭くし,簡単な計算コストで低周波語翻訳を改善する。
論文 参考訳(メタデータ) (2022-04-16T16:08:38Z) - MultiEURLEX -- A multi-lingual and multi-label legal document
classification dataset for zero-shot cross-lingual transfer [13.24356999779404]
法律文書のトピック分類のための多言語データセットであるMulti-EURLEXを紹介する。
データセットは、正式に23言語に翻訳された65kの欧州連合(EU)の法律で構成され、EUROVOC分類の複数のラベルが注釈付けされている。
そこで、ある言語(ソース)の注釈付きトレーニング文書を利用して、別の言語(ターゲット)のドキュメントを分類します。
論文 参考訳(メタデータ) (2021-09-02T12:52:55Z) - Complete Multilingual Neural Machine Translation [44.98358050355681]
本稿では、英語中心の並列コーパスを充実させるために、多方向整列例を用いて検討する。
このような接続パターンでMNMTを完全多言語ニューラルネットワーク翻訳(cMNMT)と呼ぶ。
対象言語のみに条件付けされた新たなトレーニングデータサンプリング戦略と組み合わせて、cMNMTは全ての言語ペアに対して競合翻訳品質を得る。
論文 参考訳(メタデータ) (2020-10-20T13:03:48Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
Multilingual BERTは、言語間転送タスクで驚くほどうまく機能します。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素です。
多言語BERTの言語間能力を改善するために、計算的に安価だが効果的なアプローチがある。
論文 参考訳(メタデータ) (2020-04-20T11:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。