Hybrid Deep Learning Framework for Classification of Kidney CT Images: Diagnosis of Stones, Cysts, and Tumors
- URL: http://arxiv.org/abs/2502.04367v1
- Date: Wed, 05 Feb 2025 08:38:35 GMT
- Title: Hybrid Deep Learning Framework for Classification of Kidney CT Images: Diagnosis of Stones, Cysts, and Tumors
- Authors: Kiran Sharma, Ziya Uddin, Adarsh Wadal, Dhruv Gupta,
- Abstract summary: This study introduces a hybrid deep learning model that integrates a pre-trained ResNet101 with a custom CNN to classify kidney CT images.<n>Using a dataset of 12,446 CT images and advanced feature mapping techniques, the hybrid CNN model outperforms standalone ResNet101.
- Score: 1.3749490831384266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image classification is a vital research area that utilizes advanced computational techniques to improve disease diagnosis and treatment planning. Deep learning models, especially Convolutional Neural Networks (CNNs), have transformed this field by providing automated and precise analysis of complex medical images. This study introduces a hybrid deep learning model that integrates a pre-trained ResNet101 with a custom CNN to classify kidney CT images into four categories: normal, stone, cyst, and tumor. The proposed model leverages feature fusion to enhance classification accuracy, achieving 99.73% training accuracy and 100% testing accuracy. Using a dataset of 12,446 CT images and advanced feature mapping techniques, the hybrid CNN model outperforms standalone ResNet101. This architecture delivers a robust and efficient solution for automated kidney disease diagnosis, providing improved precision, recall, and reduced testing time, making it highly suitable for clinical applications.
Related papers
- Light Weight CNN for classification of Brain Tumors from MRI Images [0.0]
This study presents a convolutional neural network (CNN)-based approach for the multi-class classification of brain tumors.
We utilize a publicly available dataset containing MRI images categorized into four classes: glioma, meningioma, pituitary tumor, and no tumor.
Experimental results demonstrate that the proposed model achieves a classification accuracy of 98.78%, indicating its potential as a diagnostic aid in clinical settings.
arXiv Detail & Related papers (2025-04-29T21:45:11Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.
Our findings illustrate significant advancements in the precision of segmentation and classification.
This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
arXiv Detail & Related papers (2025-02-23T23:28:47Z) - Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks [0.31457219084519006]
We propose a novel approach combining conventional classifiers, segmented images, and CNNs for the automated classification of sickle cell disease.<n>Our results demonstrate that using segmented images and CNN features with an SVM achieves an accuracy of 96.80%.
arXiv Detail & Related papers (2024-12-23T20:42:15Z) - Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
This study focuses on osteosarcoma (OS), the most common bone cancer in children and adolescents, which affects the long bones of the arms and legs.
We propose a novel hybrid model that combines convolutional neural networks (CNN) and vision transformers (ViT) to improve diagnostic accuracy for OS.
The model achieved an accuracy of 99.08%, precision of 99.10%, recall of 99.28%, and an F1-score of 99.23%.
arXiv Detail & Related papers (2024-10-29T13:54:08Z) - A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL) [0.0]
Acute lymphoblastic leukaemia (ALL) is a blood malignancy that mainly affects adults and children.
This study looks into the use of deep learning, specifically Convolutional Neural Networks (CNNs) for the detection and classification of ALL.
With an 87% accuracy rate, the ResNet101 model produced the best results, closely followed by DenseNet121 and VGG19.
arXiv Detail & Related papers (2024-09-10T17:53:29Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - Automated COVID-19 CT Image Classification using Multi-head Channel
Attention in Deep CNN [0.0]
We present a novel deep learning approach for automated COVID-19 CT scan classification.
A modified Xception model is proposed which incorporates a newly designed channel attention mechanism and weighted global average pooling.
Experiments on a widely used COVID-19 CT scan dataset demonstrate a very good accuracy of 96.99% and show its superiority to other state-of-the-art techniques.
arXiv Detail & Related papers (2023-07-31T16:44:06Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.