論文の概要: Identifying Flaky Tests in Quantum Code: A Machine Learning Approach
- arxiv url: http://arxiv.org/abs/2502.04471v1
- Date: Thu, 06 Feb 2025 19:43:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:43.071923
- Title: Identifying Flaky Tests in Quantum Code: A Machine Learning Approach
- Title(参考訳): 量子コードにおけるフレーキーテストの同定:機械学習アプローチ
- Authors: Khushdeep Kaur, Dongchan Kim, Ainaz Jamshidi, Lei Zhang,
- Abstract要約: 量子システムの基本的な特徴である不確定性は、量子プログラムにおけるフレキテストの可能性を高める。
量子プログラムにおけるフレキなテストを自動的に検出するために,複数の機械学習モデルを活用する,新しい機械学習プラットフォームを提案する。
- 参考スコア(独自算出の注目度): 5.323578182914324
- License:
- Abstract: Testing and debugging quantum software pose significant challenges due to the inherent complexities of quantum mechanics, such as superposition and entanglement. One challenge is indeterminacy, a fundamental characteristic of quantum systems, which increases the likelihood of flaky tests in quantum programs. To the best of our knowledge, there is a lack of comprehensive studies on quantum flakiness in the existing literature. In this paper, we present a novel machine learning platform that leverages multiple machine learning models to automatically detect flaky tests in quantum programs. Our evaluation shows that the extreme gradient boosting and decision tree-based models outperform other models (i.e., random forest, k-nearest neighbors, and support vector machine), achieving the highest F1 score and Matthews Correlation Coefficient in a balanced dataset and an imbalanced dataset, respectively. Furthermore, we expand the currently limited dataset for researchers interested in quantum flaky tests. In the future, we plan to explore the development of unsupervised learning techniques to detect and classify quantum flaky tests more effectively. These advancements aim to improve the reliability and robustness of quantum software testing.
- Abstract(参考訳): 量子ソフトウェアのテストとデバッグは、重ね合わせや絡み合いのような量子力学の本質的な複雑さのため、重大な課題となる。
1つの課題は、量子系の基本的な特徴である不決定性であり、量子プログラムにおけるフレキなテストの可能性を高めることである。
我々の知る限りでは、既存の文献には量子フレキネスに関する包括的な研究が欠如している。
本稿では,複数の機械学習モデルを利用して,量子プログラムにおけるフレキなテストを自動的に検出する新しい機械学習プラットフォームを提案する。
以上の結果から,本モデルは他のモデル(ランダムフォレスト,k-アネレスト,サポートベクターマシンなど)よりも過度に勾配を増進し,バランスの取れたデータセットと不均衡なデータセットにおいて,F1スコアとマシューズ相関係数をそれぞれ達成できることが示唆された。
さらに、量子フレキテストに興味のある研究者のために、現在限られたデータセットを拡張します。
将来的には、量子フレキテストの検出と分類をより効果的に行うための教師なし学習技術の開発について検討する予定である。
これらの進歩は、量子ソフトウェアテストの信頼性と堅牢性を改善することを目的としている。
関連論文リスト
- Quantum Pattern Detection: Accurate State- and Circuit-based Analyses [2.564905016909138]
状態および回路ベースコード解析を用いた量子パターンの自動検出のためのフレームワークを提案する。
経験的評価では、我々のフレームワークは量子パターンを非常に正確に検出することができ、既存の量子パターン検出手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-01-27T09:42:41Z) - Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection [3.9554540293311864]
本稿では、量子ベイズネットワーク(QBN)を用いて、不均衡なデータセットを分類する新しいベイズアプローチを提案する。
量子拡張を古典的な機械学習アーキテクチャに統合するという課題を効果的に解決する。
本研究は, 異常の検出・分類において重要な進歩を示し, より効果的かつ正確な環境モニタリング・管理に寄与している。
論文 参考訳(メタデータ) (2024-12-24T15:44:26Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Automated flakiness detection in quantum software bug reports [5.592360872268223]
量子ソフトウェアのバグレポートにおいて、フレキなテストの自動検出の課題と潜在的な解決策を概説する。
我々は、量子ソフトウェアにおけるフレキネスの認識を高め、この新たな課題を解決するために、ソフトウェアエンジニアリングコミュニティが協力して働くことを奨励することを目的としています。
論文 参考訳(メタデータ) (2024-08-09T20:42:20Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Neural Error Mitigation of Near-Term Quantum Simulations [0.0]
ニューラルネットワークを用いて地下状態と地下状態の観測器の推定を改善する新しい方法である$textitneural error mitigation$を紹介します。
その結果, ニューラルエラーの低減により, 数値計算と実験的VQE計算が向上し, 低エネルギー誤差が得られた。
提案手法は,複雑な量子シミュレーション問題を解くために,短期量子コンピュータの到達範囲を広げる有望な戦略である。
論文 参考訳(メタデータ) (2021-05-17T18:00:57Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
我々は、雑音に対する量子機械学習アルゴリズムの検証と解析のための正式なフレームワークを定義する。
堅牢な境界が導出され、量子機械学習アルゴリズムが量子トレーニングデータに対して堅牢であるか否かを確認するアルゴリズムが開発された。
我々のアプローチはGoogleのQuantum分類器に実装されており、ノイズの小さな乱れに関して量子機械学習アルゴリズムの堅牢性を検証することができる。
論文 参考訳(メタデータ) (2020-08-17T11:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。