Technical Debt in In-Context Learning: Diminishing Efficiency in Long Context
- URL: http://arxiv.org/abs/2502.04580v1
- Date: Fri, 07 Feb 2025 00:26:45 GMT
- Title: Technical Debt in In-Context Learning: Diminishing Efficiency in Long Context
- Authors: Taejong Joo, Diego Klabjan,
- Abstract summary: We introduce a new framework for quantifying optimality of ICL as a learning algorithm in stylized settings.
Our findings reveal a striking dichotomy: while ICL initially matches the efficiency of a Bayes optimal estimator, its efficiency significantly deteriorates in long context.
These results clarify the trade-offs in adopting ICL as a universal problem solver, motivating a new generation of on-the-fly adaptive methods.
- Score: 13.796664304274643
- License:
- Abstract: Transformers have demonstrated remarkable in-context learning (ICL) capabilities, adapting to new tasks by simply conditioning on demonstrations without parameter updates. Compelling empirical and theoretical evidence suggests that ICL, as a general-purpose learner, could outperform task-specific models. However, it remains unclear to what extent the transformers optimally learn in-context compared to principled learning algorithms. To bridge this gap, we introduce a new framework for quantifying optimality of ICL as a learning algorithm in stylized settings. Our findings reveal a striking dichotomy: while ICL initially matches the efficiency of a Bayes optimal estimator, its efficiency significantly deteriorates in long context. Through an information-theoretic analysis, we show that the diminishing efficiency is inherent to ICL. These results clarify the trade-offs in adopting ICL as a universal problem solver, motivating a new generation of on-the-fly adaptive methods without the diminishing efficiency.
Related papers
- A Smooth Transition Between Induction and Deduction: Fast Abductive Learning Based on Probabilistic Symbol Perception [81.30687085692576]
We introduce an optimization algorithm named as Probabilistic Symbol Perception (PSP), which makes a smooth transition between induction and deduction.
Experiments demonstrate the promising results.
arXiv Detail & Related papers (2025-02-18T14:59:54Z) - Normalization and effective learning rates in reinforcement learning [52.59508428613934]
Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature.
We show that normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate.
We propose to make the learning rate schedule explicit with a simple re- parameterization which we call Normalize-and-Project.
arXiv Detail & Related papers (2024-07-01T20:58:01Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks [6.596361762662328]
Internal structure and operation mechanism of large-scale language models are analyzed theoretically.
We evaluate the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies.
arXiv Detail & Related papers (2024-05-20T00:10:00Z) - How Do Nonlinear Transformers Learn and Generalize in In-Context Learning? [82.51626700527837]
Transformer-based large language models displayed impressive in-context learning capabilities, where a pre-trained model can handle new tasks without fine-tuning.
We analyze how the mechanics of how Transformer to achieve ICL contribute to the technical challenges of the training problems in Transformers.
arXiv Detail & Related papers (2024-02-23T21:07:20Z) - In-context Learning and Gradient Descent Revisited [3.085927389171139]
We show that even untrained models achieve comparable ICL-GD similarity scores despite not exhibiting ICL.
Next, we explore a major discrepancy in the flow of information throughout the model between ICL and GD, which we term Layer Causality.
We propose a simple GD-based optimization procedure that respects layer causality, and show it improves similarity scores significantly.
arXiv Detail & Related papers (2023-11-13T21:42:38Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - Unbiased and Efficient Self-Supervised Incremental Contrastive Learning [31.763904668737304]
We propose a self-supervised Incremental Contrastive Learning (ICL) framework consisting of a novel Incremental InfoNCE (NCE-II) loss function.
ICL achieves up to 16.7x training speedup and 16.8x faster convergence with competitive results.
arXiv Detail & Related papers (2023-01-28T06:11:31Z) - Self-Adaptive In-Context Learning: An Information Compression
Perspective for In-Context Example Selection and Ordering [15.3566963926257]
This paper advocates a new principle for in-context learning (ICL): self-adaptive in-context learning.
The self-adaption mechanism is introduced to help each sample find an in-context example permutation that can derive the correct prediction.
Our self-adaptive ICL method achieves a 40% relative improvement over the common practice setting.
arXiv Detail & Related papers (2022-12-20T15:55:21Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Decoupled Contrastive Learning [23.25775900388382]
We identify a noticeable negative-positive-coupling (NPC) effect in the widely used cross-entropy (InfoNCE) loss.
By properly addressing the NPC effect, we reach a decoupled contrastive learning (DCL) objective function.
Our approach achieves $66.9%$ ImageNet top-1 accuracy using batch size 256 within 200 epochs pre-training, outperforming its baseline SimCLR by $5.1%$.
arXiv Detail & Related papers (2021-10-13T16:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.