Robust Quantum Control for Bragg Pulse Design in Atom Interferometry
- URL: http://arxiv.org/abs/2502.04618v2
- Date: Mon, 10 Feb 2025 18:58:34 GMT
- Title: Robust Quantum Control for Bragg Pulse Design in Atom Interferometry
- Authors: Luke S. Baker, Andre Luiz P. de Lima, Andrew Harter, Ceren Uzun, Jr-Shin Li, Anatoly Zlotnik, Michael J. Martin, Malcolm G. Boshier,
- Abstract summary: We formulate a robust optimal control algorithm to synthesize minimum energy pulses that can transfer a cold atom system into various momentum states.
The algorithm is applied to optimize the atomic beam operation in ultra-cold atom interferometry.
- Score: 0.0
- License:
- Abstract: We formulate a robust optimal control algorithm to synthesize minimum energy pulses that can transfer a cold atom system into various momentum states. The algorithm uses adaptive linearization of the evolution operator and sequential quadratic programming to iterate the control towards a minimum energy signal that achieves optimal target state fidelity. Robustness to parameter variation is achieved using Legendre polynomial approximation over the domain of variation. The method is applied to optimize the Bragg beamsplitting operation in ultra-cold atom interferometry. Even in the presence of 10-40% variability in the initial momentum dispersion of the atomic cloud and the intensity of the optical pulse, the algorithm reliably converges to a control protocol that robustly achieves unprecedented momentum levels with high fidelity for a single-frequency multi-photon Bragg diffraction scheme (e.g. $|\pm 40\hbar k\rangle$). Advantages of the proposed method are demonstrated by comparison to stochastic optimization using sampled parameter values.
Related papers
- Pulse engineering via projection of response functions [0.0]
We present an iterative optimal control method of quantum systems, aimed at an implementation of a desired operation with optimal fidelity.
The update step of the method is based on the linear response of the fidelity to the control operators, and its projection onto the mode functions of the corresponding operator.
We demonstrate this approach, and compare it to the standard GRAPE algorithm, for the example of a quantum gate on two qubits, demonstrating a clear improvement in convergence and optimal fidelity of the generated protocol.
arXiv Detail & Related papers (2024-04-16T11:02:49Z) - Energy control in a quantum oscillator using coherent control and engineered environment [83.88591755871734]
We develop and analyze a new method for manipulation of energy in a quantum harmonic oscillator using coherent, electromagnetic, field and incoherent control.
An approach to coherent and incoherent controls design based on the speed gradient algorithms is proposed.
A robustified speed-gradient control algorithm in differential form is also proposed.
arXiv Detail & Related papers (2024-03-25T20:44:46Z) - Shaping the Laser Control Landscape of a Hydrogen Transfer Reaction by
Vibrational Strong Coupling. A Direct Optimal Control Approach [0.0]
Simultaneous direct optimal control (SimDOC) theory will be applied to a model system describing H-atom transfer in a lossy Fabry-P'erot cavity.
arXiv Detail & Related papers (2024-01-02T10:34:49Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Robust Quantum Control using Hybrid Pulse Engineering [0.0]
gradient-based optimization algorithms are limited by their sensitivity to the initial guess.
Our numerical analysis confirms its superior convergence rate.
We describe a general method to construct noise-resilient quantum controls by incorporating noisy fields.
arXiv Detail & Related papers (2021-12-02T14:29:42Z) - Batch Optimization of Frequency-Modulated Pulses for Robust Two-qubit
Gates in Ion Chains [3.0916705331600047]
Two-qubit gates in trapped-ion quantum computers are generated by applying spin-dependent forces that temporarily entangle the internal state of the ion with its motion.
Laser pulses are carefully designed to generate a maximally entangling gate between the ions while minimizing any residual entanglement between the motion and the ion.
We improve the robustness of frequency-modulated Molmer-Sorensen gates to motional mode-frequency offsets by optimizing the average performance over a range of systematic errors.
arXiv Detail & Related papers (2021-04-14T14:30:56Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Quantum optimal control using phase-modulated driving fields [11.75064344240877]
We devise a novel variant of a gradient-free optimal-control method by introducing the idea of phase-modulated driving fields.
We numerically evaluate its performance and demonstrate the advantages over standard Fourier-basis methods in controlling an ensemble of two-level systems.
arXiv Detail & Related papers (2020-09-22T02:07:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.