ARR: Question Answering with Large Language Models via Analyzing, Retrieving, and Reasoning
- URL: http://arxiv.org/abs/2502.04689v3
- Date: Thu, 15 May 2025 17:52:51 GMT
- Title: ARR: Question Answering with Large Language Models via Analyzing, Retrieving, and Reasoning
- Authors: Yuwei Yin, Giuseppe Carenini,
- Abstract summary: This paper introduces ARR, an intuitive, effective, and general QA solving method.<n>It explicitly incorporates three key steps: analyzing the intent of the question, retrieving relevant information, and reasoning step by step.<n>It is the first to introduce intent analysis in QA, which plays a vital role in ARR.
- Score: 22.825527641316192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities on complex evaluation benchmarks, many of which are formulated as question-answering (QA) tasks. Enhancing the performance of LLMs in QA contexts is becoming increasingly vital for advancing their development and applicability. This paper introduces ARR, an intuitive, effective, and general QA solving method that explicitly incorporates three key steps: analyzing the intent of the question, retrieving relevant information, and reasoning step by step. Notably, this paper is the first to introduce intent analysis in QA, which plays a vital role in ARR. Comprehensive evaluations across 10 diverse QA tasks demonstrate that ARR consistently outperforms the baseline methods. Ablation and case studies further validate the positive contributions of each ARR component. Furthermore, experiments involving variations in prompt design indicate that ARR maintains its effectiveness regardless of the specific prompt formulation. Additionally, extensive evaluations across various model sizes, LLM series, and generation settings solidify the effectiveness, robustness, and generalizability of ARR.
Related papers
- CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
We develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward.<n>It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types.<n>We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier.
arXiv Detail & Related papers (2025-08-05T17:55:24Z) - RAG-Zeval: Towards Robust and Interpretable Evaluation on RAG Responses through End-to-End Rule-Guided Reasoning [64.46921169261852]
RAG-Zeval is a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task.<n>Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments.<n>Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments.
arXiv Detail & Related papers (2025-05-28T14:55:33Z) - RISE: Reasoning Enhancement via Iterative Self-Exploration in Multi-hop Question Answering [25.84802288928995]
We propose RISE:Reasoning Enhancement via Iterative Self-Exploration, a novel framework designed to enhance models' reasoning capability.<n>It involves three key steps in addressing MHQA tasks: question decomposition, retrieve-then-read, and self-critique.<n>Experiments on multiple MHQA benchmarks demonstrate that RISE significantly improves reasoning accuracy and task performance.
arXiv Detail & Related papers (2025-05-28T03:48:28Z) - General-Reasoner: Advancing LLM Reasoning Across All Domains [64.70599911897595]
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains.<n>We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc.
arXiv Detail & Related papers (2025-05-20T17:41:33Z) - CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models [14.784841713647682]
CoT-RAG is a novel reasoning framework with three key designs.
It features Knowledge Graph-driven CoT Generation, Learnable Knowledge Case-aware RAG, and Pseudo-Program Prompting Execution.
Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%.
arXiv Detail & Related papers (2025-04-18T07:55:09Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
We propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL)
It employs self-generated natural language critiques as feedback to guide the step-level search process.
This approach bypasses the need for task-specific verifiers and the associated training overhead.
arXiv Detail & Related papers (2025-03-21T17:59:55Z) - ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.<n>Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning [19.477062052536887]
We propose the Logical-Semantic Integration Model (LSIM), a supervised framework that bridges semantic and logical coherence.
LSIM comprises three components: reinforcement learning predicts a structured fact-rule chain for each question, a trainable Deep Structured Semantic Model (DSSM) retrieves the most relevant candidate questions and in-answer learning generates the final answer.
Our experiments on a real-world legal dataset QA-validated through both automated metrics and human evaluation-demonstrate that LSIM significantly enhances accuracy and reliability compared to existing methods.
arXiv Detail & Related papers (2025-02-11T19:33:07Z) - A Survey of Query Optimization in Large Language Models [10.255235456427037]
RAG mitigates the limitations of Large Language Models by dynamically retrieving and leveraging up-to-date relevant information.
QO has emerged as a critical element, playing a pivotal role in determining the effectiveness of RAG's retrieval stage.
arXiv Detail & Related papers (2024-12-23T13:26:04Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness.
Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness.
We introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning.
arXiv Detail & Related papers (2024-10-02T11:26:02Z) - Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
We present InsCoQA, a novel benchmark for evaluating large language models (LLMs) in the context of conversational question answering (CQA)
Sourced from extensive, encyclopedia-style instructional content, InsCoQA assesses models on their ability to retrieve, interpret, and accurately summarize procedural guidance from multiple documents.
We also propose InsEval, an LLM-assisted evaluator that measures the integrity and accuracy of generated responses and procedural instructions.
arXiv Detail & Related papers (2024-10-01T09:10:00Z) - Towards Flexible Evaluation for Generative Visual Question Answering [17.271448204525612]
This paper proposes the use of semantics-based evaluators for assessing unconstrained open-ended responses on Visual Question Answering (VQA) datasets.
In addition, this paper proposes a Semantically Flexible VQA Evaluator (SFVE) with meticulous design based on the unique features of VQA evaluation.
arXiv Detail & Related papers (2024-08-01T05:56:34Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Self-Convinced Prompting: Few-Shot Question Answering with Repeated
Introspection [13.608076739368949]
We introduce a novel framework that harnesses the potential of large-scale pre-trained language models.
Our framework processes the output of a typical few-shot chain-of-thought prompt, assesses the correctness of the response, scrutinizes the answer, and ultimately produces a new solution.
arXiv Detail & Related papers (2023-10-08T06:36:26Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z) - QontSum: On Contrasting Salient Content for Query-focused Summarization [22.738731393540633]
Query-focused summarization (QFS) is a challenging task in natural language processing that generates summaries to address specific queries.
This paper highlights the role of QFS in Grounded Answer Generation (GAR)
We propose QontSum, a novel approach for QFS that leverages contrastive learning to help the model attend to the most relevant regions of the input document.
arXiv Detail & Related papers (2023-07-14T19:25:35Z) - Active Prompting with Chain-of-Thought for Large Language Models [26.5029080638055]
This paper proposes a new method, Active-Prompt, to adapt large language models to different tasks.
By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty.
Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks.
arXiv Detail & Related papers (2023-02-23T18:58:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.