論文の概要: SiriuS: Self-improving Multi-agent Systems via Bootstrapped Reasoning
- arxiv url: http://arxiv.org/abs/2502.04780v1
- Date: Fri, 07 Feb 2025 09:33:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 18:29:33.092322
- Title: SiriuS: Self-improving Multi-agent Systems via Bootstrapped Reasoning
- Title(参考訳): SiriuS:Bootstrapped Reasoningによるマルチエージェントシステムの自己改善
- Authors: Wanjia Zhao, Mert Yuksekgonul, Shirley Wu, James Zou,
- Abstract要約: 大規模言語モデル(LLM)を利用したマルチエージェントAIシステムは、複雑なタスクの解決にますます応用されている。
マルチエージェントシステムのための自己改善型推論駆動最適化フレームワークであるSiriuSを紹介する。
SiriuSは、自己補正と自己再生の強化のために再利用可能なデータを生成しながら、マルチエージェントのパフォーマンスを向上させる。
- 参考スコア(独自算出の注目度): 21.94477076055433
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-agent AI systems powered by large language models (LLMs) are increasingly applied to solve complex tasks. However, these systems often rely on fragile, manually designed prompts and heuristics, making optimization difficult. A key challenge in optimizing multi-agent systems is acquiring suitable training data for specialized agents. We introduce SiriuS, a self-improving, reasoning-driven optimization framework for multi-agent systems. Central to our approach is the construction of an experience library: a repository of high-quality reasoning trajectories. The library is built by retaining reasoning steps that lead to successful outcomes, providing a robust training set for optimizing multi-agent system. Additionally, we introduce a library augmentation procedure that refines unsuccessful trajectories, further enriching the library. SiriuS boosts performance by 2.86\% to 21.88\% on reasoning and biomedical QA and enhances agent negotiation in competitive settings. Our results show that SiriuS enhances multi-agent performance while generating reusable data for self-correction and self-play enhancement in the future.
- Abstract(参考訳): 大規模言語モデル(LLM)を利用したマルチエージェントAIシステムは、複雑なタスクの解決にますます応用されている。
しかしながら、これらのシステムはしばしば脆弱で手動設計のプロンプトとヒューリスティックに依存しており、最適化を困難にしている。
マルチエージェントシステムの最適化における重要な課題は、特殊エージェントに適したトレーニングデータを取得することである。
マルチエージェントシステムのための自己改善型推論駆動最適化フレームワークであるSiriuSを紹介する。
当社のアプローチの中心は,高品質な推論トラジェクトリのリポジトリであるエクスペリエンスライブラリの構築です。
このライブラリは、成功に導く推論ステップを保持し、マルチエージェントシステムを最適化するための堅牢なトレーニングセットを提供する。
さらに,未完成の軌跡を洗練し,さらに図書館を充実させるライブラリ拡張手順を導入する。
SiriuSは、推論とバイオメディカルQAのパフォーマンスを2.86 %から21.88 %に向上し、競合する環境でのエージェント交渉を強化する。
以上の結果から,SiriuSは将来,自己補正と自己再生の強化のために再利用可能なデータを生成しつつ,マルチエージェントのパフォーマンスを向上させることが示唆された。
関連論文リスト
- DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
本稿では,新しい大規模言語モデル (LLM) によるエージェントフレームワークを提案する。
動的に進化する知識を活用することで、クエリを反復的に洗練し、文脈的証拠をフィルタリングする。
提案システムは、更新されたコンテキストの競合的および協調的な共有をサポートする。
論文 参考訳(メタデータ) (2025-03-17T15:27:02Z) - A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops [3.729242965449096]
本稿では,産業間におけるエージェントAIソリューションを自律的に最適化するフレームワークを提案する。
このフレームワークは、仮説を自律的に生成し、テストすることで、人間の入力なしに最適な性能を達成する。
ケーススタディでは、アウトプットの品質、妥当性、動作性が大幅に改善された。
論文 参考訳(メタデータ) (2024-12-22T20:08:04Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement [18.84439000902905]
現在の大規模言語モデル(LLM)ベースのソフトウェアエージェントは、しばしば線形でシーケンシャルなプロセスに従う。
モンテカルロ木探索(MCTS)と自己改善機構を統合したマルチエージェントフレームワークであるSWE-Searchを提案する。
これは、複雑なソフトウェアエンジニアリング環境における自己評価駆動検索技術の可能性を強調している。
論文 参考訳(メタデータ) (2024-10-26T22:45:56Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents [44.34340798542]
大きな言語モデル(LLM)は、複雑な推論を必要とする自然言語タスクにおいて顕著な能力を示している。
静的データセットに対する従来の教師付き事前トレーニングは、自律的なエージェント機能を実現するには不十分である。
本稿では,モンテカルロ木探索(MCTS)を自己批判機構と組み合わせ,エージェント間相互作用を反復的に微調整するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T20:52:13Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは、特殊エージェントをマルチエージェントシステムに自動的に拡張するジェネリックメソッドである。
EvoAgent は LLM エージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - AIOS: LLM Agent Operating System [39.59087894012381]
本稿では,LLMベースのエージェント管理のコンテキスト下で,AIOS(LLMベースのAIエージェントオペレーティングシステム)のアーキテクチャを提案する。
エージェントアプリケーションからリソースとLLM固有のサービスをAIOSカーネルに分離することで、LLMベースのエージェントを提供するための新しいアーキテクチャを導入する。
AIOSを使用すると、さまざまなエージェントフレームワークで構築されたエージェントを最大2.1倍高速に実行することができる。
論文 参考訳(メタデータ) (2024-03-25T17:32:23Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。