Explainable and externally validated machine learning for neuropsychiatric diagnosis via electrocardiograms
- URL: http://arxiv.org/abs/2502.04918v1
- Date: Fri, 07 Feb 2025 13:37:13 GMT
- Title: Explainable and externally validated machine learning for neuropsychiatric diagnosis via electrocardiograms
- Authors: Juan Miguel Lopez Alcaraz, Ebenezer Oloyede, David Taylor, Wilhelm Haverkamp, Nils Strodthoff,
- Abstract summary: Electrocardiogram (ECG) analysis has emerged as a promising tool for identifying physiological changes associated with neuropsychiatric conditions.
The potential of the ECG to accurately distinguish neuropsychiatric conditions, particularly among diverse patient populations, remains underexplored.
This study utilized ECG markers and basic demographic data to predict neuropsychiatric conditions using machine learning models.
- Score: 0.8108972030676012
- License:
- Abstract: Electrocardiogram (ECG) analysis has emerged as a promising tool for identifying physiological changes associated with neuropsychiatric conditions. The relationship between cardiovascular health and neuropsychiatric disorders suggests that ECG abnormalities could serve as valuable biomarkers for more efficient detection, therapy monitoring, and risk stratification. However, the potential of the ECG to accurately distinguish neuropsychiatric conditions, particularly among diverse patient populations, remains underexplored. This study utilized ECG markers and basic demographic data to predict neuropsychiatric conditions using machine learning models, with targets defined through ICD-10 codes. Both internal and external validation were performed using the MIMIC-IV and ECG-View datasets respectively. Performance was assessed using AUROC scores. To enhance model interpretability, Shapley values were applied to provide insights into the contributions of individual ECG features to the predictions. Significant predictive performance was observed for conditions within the neurological and psychiatric groups. For the neurological group, Alzheimer's disease (G30) achieved an internal AUROC of 0.813 (0.812-0.814) and an external AUROC of 0.868 (0.867-0.868). In the psychiatric group, unspecified dementia (F03) showed an internal AUROC of 0.849 (0.848-0.849) and an external AUROC of 0.862 (0.861-0.863). Discriminative features align with known ECG markers but also provide hints on potentially new markers. ECG offers significant promise for diagnosing and monitoring neuropsychiatric conditions, with robust predictive performance across internal and external cohorts. Future work should focus on addressing potential confounders, such as therapy-related cardiotoxicity, and expanding the scope of ECG applications, including personalized care and early intervention strategies.
Related papers
- Evaluating the Efficacy of Vectocardiographic and ECG Parameters for Efficient Tertiary Cardiology Care Allocation Using Decision Tree Analysis [0.0]
Use real word data to evaluate the performance of the electrocardiographic markers of GEH as features in a machine learning model.
The GEH parameters turned out to have statistical significance for this population.
arXiv Detail & Related papers (2024-12-16T15:01:53Z) - Explainable machine learning for neoplasms diagnosis via electrocardiograms: an externally validated study [0.9503773054285559]
Neoplasms remains a leading cause of mortality worldwide.
Current diagnostic methods are often invasive, costly, and inaccessible to many populations.
This study explores the application of machine learning models to analyze ECG features for the diagnosis of neoplasms.
arXiv Detail & Related papers (2024-12-10T18:34:08Z) - rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
We propose a novel multi-modal methodology for ECG analysis and arrhythmia classification.
The proposed rECGnition_v1.0 algorithm paves the way for its deployment in clinics.
arXiv Detail & Related papers (2024-10-09T11:17:02Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCO is a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data.
We conduct experiments on the public MIMIC-III dataset and Emory internal CRADLE dataset over the downstream clinical tasks of phenotype classification and cardiovascular risk prediction.
In-depth model analysis, clustering results analysis, and clinical case studies further validate the improved utilities and insightful interpretations delivered by TACCO.
arXiv Detail & Related papers (2024-06-14T14:18:38Z) - Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
Histologic remission is a new therapeutic target in ulcerative colitis (UC)
Endocytoscopy (EC) is a novel ultra-high magnification endoscopic technique.
We propose a neural network model that can assess histological disease activity in EC images.
arXiv Detail & Related papers (2023-08-28T15:54:14Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.