Acoustic Index: A Novel AI-Driven Parameter for Cardiac Disease Risk Stratification Using Echocardiography
- URL: http://arxiv.org/abs/2507.13542v1
- Date: Thu, 17 Jul 2025 21:27:28 GMT
- Title: Acoustic Index: A Novel AI-Driven Parameter for Cardiac Disease Risk Stratification Using Echocardiography
- Authors: Beka Begiashvili, Carlos J. Fernandez-Candel, Matías Pérez Paredes,
- Abstract summary: We introduce the Acoustic Index, a novel AI-derived echocardiographic parameter designed to quantify cardiac dysfunction from standard ultrasound views.<n>The model combines Extended Dynamic Mode Decomposition (EDMD) based on Koopman operator theory with a hybrid neural network that incorporates clinical metadata.<n>In a prospective cohort of 736 patients, encompassing various cardiac pathologies and normal controls, the Acoustic Index achieved an area under the curve (AUC) of 0.89 in an independent test set.<n>Cross-validation across five folds confirmed the robustness of the model, showing that both sensitivity and specificity exceeded 0.8 when evaluated on independent data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traditional echocardiographic parameters such as ejection fraction (EF) and global longitudinal strain (GLS) have limitations in the early detection of cardiac dysfunction. EF often remains normal despite underlying pathology, and GLS is influenced by load conditions and vendor variability. There is a growing need for reproducible, interpretable, and operator-independent parameters that capture subtle and global cardiac functional alterations. We introduce the Acoustic Index, a novel AI-derived echocardiographic parameter designed to quantify cardiac dysfunction from standard ultrasound views. The model combines Extended Dynamic Mode Decomposition (EDMD) based on Koopman operator theory with a hybrid neural network that incorporates clinical metadata. Spatiotemporal dynamics are extracted from echocardiographic sequences to identify coherent motion patterns. These are weighted via attention mechanisms and fused with clinical data using manifold learning, resulting in a continuous score from 0 (low risk) to 1 (high risk). In a prospective cohort of 736 patients, encompassing various cardiac pathologies and normal controls, the Acoustic Index achieved an area under the curve (AUC) of 0.89 in an independent test set. Cross-validation across five folds confirmed the robustness of the model, showing that both sensitivity and specificity exceeded 0.8 when evaluated on independent data. Threshold-based analysis demonstrated stable trade-offs between sensitivity and specificity, with optimal discrimination near this threshold. The Acoustic Index represents a physics-informed, interpretable AI biomarker for cardiac function. It shows promise as a scalable, vendor-independent tool for early detection, triage, and longitudinal monitoring. Future directions include external validation, longitudinal studies, and adaptation to disease-specific classifiers.
Related papers
- From Motion to Meaning: Biomechanics-Informed Neural Network for Explainable Cardiovascular Disease Identification [1.1142444517901016]
We utilize the energy strain formulation of Neo-Hookean material to model cardiac tissue deformations.<n>We estimate the local strains within the moving heart and extract a detailed set of features used for cardiovascular disease classification.
arXiv Detail & Related papers (2025-07-08T08:43:05Z) - Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification [0.0]
We propose ArrhythmiNet V1 and V2, optimized for efficient, real-time arrhythmia classification on edge devices.<n>Inspired by MobileNet's depthwise separable convolutional design, these models maintain memory footprints of just 302.18 KB and 157.76 KB, respectively.<n>Our findings demonstrate the feasibility of combining interpretability, predictive accuracy, and computational efficiency in practical, wearable, and embedded ECG monitoring systems.
arXiv Detail & Related papers (2025-04-30T18:22:45Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.<n>We incorporate elements modeling effects to better align simulated data with real-world measurements.<n>The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
We propose a novel multi-modal methodology for ECG analysis and arrhythmia classification.
The proposed rECGnition_v1.0 algorithm paves the way for its deployment in clinics.
arXiv Detail & Related papers (2024-10-09T11:17:02Z) - Predicting risk of cardiovascular disease using retinal OCT imaging [40.71667870702634]
Cardiovascular diseases (CVD) are the leading cause of death globally.<n>Optical coherence tomography ( OCT) has gained recognition as a potential tool for early CVD risk prediction.<n>We investigated the potential of OCT as an additional imaging technique to predict future CVD events.
arXiv Detail & Related papers (2024-03-26T14:42:46Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
We develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data.
A residual network (ResNet) approach is also developed for comparison with the vision transformer approach.
arXiv Detail & Related papers (2024-02-12T11:04:08Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Towards Enabling Cardiac Digital Twins of Myocardial Infarction Using
Deep Computational Models for Inverse Inference [6.447210290674733]
We present a novel deep computational model, comprising a dual-branch variational autoencoder and an inference model, to infer infarct location and distribution from the simulated QRS.
The sensitivity analysis enhances our understanding of the complex relationship between infarct characteristics and electrophysiological features.
arXiv Detail & Related papers (2023-07-10T08:54:12Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.