論文の概要: The Rising Threat to Emerging AI-Powered Search Engines
- arxiv url: http://arxiv.org/abs/2502.04951v1
- Date: Fri, 07 Feb 2025 14:15:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:39.383997
- Title: The Rising Threat to Emerging AI-Powered Search Engines
- Title(参考訳): AIを駆使した検索エンジンの進化への脅威
- Authors: Zeren Luo, Zifan Peng, Yule Liu, Zhen Sun, Mingchen Li, Jingyi Zheng, Xinlei He,
- Abstract要約: 7 つの生産 AIPSE の安全リスク定量化を行う。
その結果,AIPSEは悪質なURLを含む有害なコンテンツを頻繁に生成することがわかった。
我々は,GPT-4oベースのコンテンツリファインメントツールとXGBoostベースのURL検出器を備えたエージェントベースディフェンスを開発した。
- 参考スコア(独自算出の注目度): 20.796363884152466
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have significantly enhanced the capabilities of AI-Powered Search Engines (AIPSEs), offering precise and efficient responses by integrating external databases with pre-existing knowledge. However, we observe that these AIPSEs raise risks such as quoting malicious content or citing malicious websites, leading to harmful or unverified information dissemination. In this study, we conduct the first safety risk quantification on seven production AIPSEs by systematically defining the threat model, risk level, and evaluating responses to various query types. With data collected from PhishTank, ThreatBook, and LevelBlue, our findings reveal that AIPSEs frequently generate harmful content that contains malicious URLs even with benign queries (e.g., with benign keywords). We also observe that directly query URL will increase the risk level while query with natural language will mitigate such risk. We further perform two case studies on online document spoofing and phishing to show the ease of deceiving AIPSEs in the real-world setting. To mitigate these risks, we develop an agent-based defense with a GPT-4o-based content refinement tool and an XGBoost-based URL detector. Our evaluation shows that our defense can effectively reduce the risk but with the cost of reducing available information. Our research highlights the urgent need for robust safety measures in AIPSEs.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、AIパワー検索エンジン(AIPSE)の機能を大幅に強化し、既存の知識と外部データベースを統合することで、正確かつ効率的な応答を提供する。
しかし,これらのAIPSEは悪意のあるコンテンツを引用したり,悪意のあるウェブサイトを引用したりするリスクを増大させ,有害な情報や不確実な情報発信につながることが観察された。
本研究では,脅威モデルとリスクレベルを体系的に定義し,各種クエリタイプに対する応答を評価することにより,第1の安全リスク定量化を行う。
PhishTank、ThreatBook、LevelBlueから収集されたデータから、AIPSEは、良質なクエリ(例えば、良質なキーワードを含む)でさえ悪質なURLを含む有害なコンテンツを頻繁に生成することがわかった。
また、自然言語によるクエリによってリスクが軽減される一方で、URLを直接クエリすることでリスクレベルが高まることも観察した。
さらに,オンライン文書の偽造とフィッシングに関する2つの事例研究を行い,実世界におけるAIPSEの偽造の容易性を示す。
これらのリスクを軽減するため、GPT-4oベースのコンテンツリファインメントツールとXGBoostベースのURL検出器を用いたエージェントベースのディフェンスを開発した。
評価の結果,我々の防衛はリスクを効果的に低減できるが,情報量を減らすコストがかかることがわかった。
本研究は,AIPSEにおける堅牢な安全対策の必要性を浮き彫りにするものである。
関連論文リスト
- Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications [0.0]
大規模言語モデル(LLM)は、高度な自然言語処理機能を提供することによって、様々なアプリケーションに革命をもたらした。
本稿では,LSMを利用したアプリケーションに適した脅威モデリングとリスク分析について検討する。
論文 参考訳(メタデータ) (2024-06-16T16:43:58Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - GUARD-D-LLM: An LLM-Based Risk Assessment Engine for the Downstream uses of LLMs [0.0]
本稿では,大規模言語モデル(LLM)の下流から発生するリスクについて検討する。
テキストベースのユーザ入力から派生した特定のユースケースに関連する脅威を特定し、ランク付けする新しいLCMベースのリスクアセスメントエンジン(GUARD-D-LLM)を導入する。
30の知的エージェントを統合することで、この革新的なアプローチは、悪夢のリスクを特定し、その重症度を測定し、緩和のためのターゲットとなる提案を提供し、リスク認識開発を促進する。
論文 参考訳(メタデータ) (2024-04-02T05:25:17Z) - Risk and Response in Large Language Models: Evaluating Key Threat Categories [6.436286493151731]
本稿では,Large Language Models (LLMs) におけるリスクアセスメントのプレッシャーについて考察する。
人為的レッドチームデータセットを利用することで、情報ハザード、悪用、差別/憎しみのあるコンテンツなど、主要なリスクカテゴリを分析します。
以上の結果から,LSMは情報ハザードを有害とみなす傾向があることが示唆された。
論文 参考訳(メタデータ) (2024-03-22T06:46:40Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
本稿では,従来のシステムにおけるリスク評価手法のようなツールを用いたリスク評価プロセスを提案する。
我々は、潜在的な脅威要因を特定し、脆弱性要因に対して依存するシステムコンポーネントをマッピングするためのシナリオ分析を行う。
3つの主要株主グループに対する脅威もマップ化しています。
論文 参考訳(メタデータ) (2024-03-20T05:17:22Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - A Security Risk Taxonomy for Prompt-Based Interaction With Large Language Models [5.077431021127288]
本稿では,大規模言語モデル(LLM)によるセキュリティリスクに着目し,現在の研究のギャップに対処する。
我々の研究は,ユーザモデル通信パイプラインに沿ったセキュリティリスクの分類を提案し,一般的に使用されている機密性,完全性,可用性(CIA)3つのトライアドと並行して,ターゲットタイプと攻撃タイプによる攻撃を分類する。
論文 参考訳(メタデータ) (2023-11-19T20:22:05Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。