論文の概要: Learning the Language of NVMe Streams for Ransomware Detection
- arxiv url: http://arxiv.org/abs/2502.05011v1
- Date: Fri, 07 Feb 2025 15:33:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:56:49.541386
- Title: Learning the Language of NVMe Streams for Ransomware Detection
- Title(参考訳): ランサムウェア検出のためのNVMeストリーム言語学習
- Authors: Barak Bringoltz, Elisha Halperin, Ran Feraru, Evgeny Blaichman, Amit Berman,
- Abstract要約: ランサムウェアの動作を検出するために、2種類のトランスフォーマーモデルの設計と訓練を行う。
ランサムウェアによってアクセスされたデータの識別では,24%がミス検出率,66%がデータ損失防止,84%が改善した。
- 参考スコア(独自算出の注目度): 4.1942958779358674
- License:
- Abstract: We apply language modeling techniques to detect ransomware activity in NVMe command sequences. We design and train two types of transformer-based models: the Command-Level Transformer (CLT) performs in-context token classification to determine whether individual commands are initiated by ransomware, and the Patch-Level Transformer (PLT) predicts the volume of data accessed by ransomware within a patch of commands. We present both model designs and the corresponding tokenization and embedding schemes and show that they improve over state-of-the-art tabular methods by up to 24% in missed-detection rate, 66% in data loss prevention, and 84% in identifying data accessed by ransomware.
- Abstract(参考訳): NVMeコマンドシーケンスにおけるランサムウェアの活動を検出するために,言語モデリング手法を適用した。
Command-Level Transformer (CLT) はランサムウェアによって個々のコマンドが起動されるかどうかを判断するためにコンテキスト内トークン分類を行い、Patch-Level Transformer (PLT) はランサムウェアによってアクセスされるデータの量をコマンドのパッチ内で予測する。
モデル設計とそれに対応するトークン化および埋め込み方式の両方を提示し,ランサムウェアによってアクセスされたデータの識別において,ミス検出速度が最大24%,データ損失防止が66%,そして84%向上したことを示す。
関連論文リスト
- Detection of ransomware attacks using federated learning based on the CNN model [3.183529890105507]
本稿では,デジタルサブステーションの破壊動作をターゲットとしたランサムウェア攻撃モデリング手法を提案する。
提案手法はランサムウェアを高い精度で検出することを示した。
論文 参考訳(メタデータ) (2024-05-01T09:57:34Z) - A Transformer-Based Framework for Payload Malware Detection and Classification [0.0]
ディープパケット検査(Deep Packet Inspection, DPI)は、IDSがネットワークパケットの内容を分析することを可能にする技術である。
本稿では,悪意のあるトラフィックを検出するために適応したトランスフォーマーに基づくDPIアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-27T03:25:45Z) - Camouflage is all you need: Evaluating and Enhancing Language Model
Robustness Against Camouflage Adversarial Attacks [53.87300498478744]
自然言語処理(NLP)における敵攻撃の意義
本研究は、脆弱性評価とレジリエンス向上という2つの異なる段階において、この課題を体系的に探求する。
結果として、パフォーマンスとロバスト性の間のトレードオフが示唆され、いくつかのモデルは、ロバスト性を確保しながら、同様のパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-02-15T10:58:22Z) - UnitY: Two-pass Direct Speech-to-speech Translation with Discrete Units [64.61596752343837]
本稿では,まずテキスト表現を生成し,離散音響単位を予測する2パス直接S2STアーキテクチャであるUnitYを提案する。
第1パスデコーダのサブワード予測によりモデル性能を向上させる。
提案手法は,第2パスのスペクトルを予測しても性能が向上することを示す。
論文 参考訳(メタデータ) (2022-12-15T18:58:28Z) - Interpretable Machine Learning for Detection and Classification of
Ransomware Families Based on API Calls [5.340730281227837]
この研究は、ランサムウェアファミリーを検出し分類するために、異なるAPI呼び出しの周波数を利用する。
WebCrawlerは15種類のランサムウェアファミリーのWindows Portable Executable PEファイルの収集を自動化するために開発された。
Logistic Regressionは、ランサムウェアを9915の精度で対応する家族に効率的に分類することができる。
論文 参考訳(メタデータ) (2022-10-16T15:54:45Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Tweaking Metasploit to Evade Encrypted C2 Traffic Detection [5.156484100374058]
コマンド・アンド・コントロール(C2)通信は、いかなる構造化サイバー攻撃においても重要な要素である。
Metasploitのようなペンテスティングツールは、通常のWebトラフィックと容易に区別できる一定のトラフィックパターンを生成する。
機械学習に基づく検知器は,暗号化された場合でも,そのようなトラフィックの存在を高精度に検出できることを示す。
論文 参考訳(メタデータ) (2022-09-02T10:56:15Z) - Enhanced Direct Speech-to-Speech Translation Using Self-supervised
Pre-training and Data Augmentation [76.13334392868208]
直接音声音声変換(S2ST)モデルは、データ不足の問題に悩まされる。
本研究では,この課題に対処するために,ラベルのない音声データとデータ拡張を用いた自己教師付き事前学習について検討する。
論文 参考訳(メタデータ) (2022-04-06T17:59:22Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
そこで我々は,TraSeTRを提案する。TraSeTR,TraSeTR,Trace-to-Segment Transformerは,手術器具のセグメンテーションを支援する。
TraSeTRは、機器の種類、位置、アイデンティティとインスタンスレベルの予測を共同で理由付けている。
提案手法の有効性を,3つの公開データセットに対して,最先端の計器型セグメンテーション結果を用いて実証した。
論文 参考訳(メタデータ) (2022-02-17T05:52:18Z) - Wake Word Detection with Alignment-Free Lattice-Free MMI [66.12175350462263]
音声言語インタフェース、例えばパーソナルデジタルアシスタントは、音声入力の処理を開始するためにウェイクワードに依存している。
本稿では,部分的にラベル付けされたトレーニングデータから,ハイブリッドDNN/HMM覚醒単語検出システムの学習方法を提案する。
提案手法を2つの実データ集合上で評価し, 前報よりも50%~90%の誤報率の減少率を示した。
論文 参考訳(メタデータ) (2020-05-17T19:22:25Z) - Towards a Resilient Machine Learning Classifier -- a Case Study of
Ransomware Detection [5.560986338397972]
ランサムウェア(暗号ランサムウェアと呼ばれる)を検出するために機械学習(ML)分類器が作られた
ランサムウェアとファイル内容エントロピーのインプット/アウトプットアクティビティは,暗号ランサムウェアを検出するユニークな特徴であることがわかった。
精度と弾力性に加えて、信頼性は品質検知のもう一つの重要な基準である。
論文 参考訳(メタデータ) (2020-03-13T18:02:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。